• Title/Summary/Keyword: Static Pressure Distribution

Search Result 215, Processing Time 0.028 seconds

Static Lateral Active Earth Pressures with Various Wall Movements (벽체변위에 따른 초유벽의 정적 주동 토압)

  • 채영수;김영진
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.25-32
    • /
    • 1988
  • This paper first presents the distributions of static lateral earth pressure in case of translational o.all movement (ATRA) , obtained respectively by the Dubrova method and by the method where Chang's idea is applied to the former, acting on the rigid retaining vertical wall with horizontal sand backfill. Total active resultant forces and the points of application of those forces, calculated results by the two methods, are compared with the experimental results recently published by Fang Y.S. and Ishibashi I. A comparative study about the distribution of static lateral earth pressurein each case of rotation about top(AT) and base (AB), on which the writer studied previously, is also conducted along with the above experimental results. The following results are obtained 1) In case of AT and ATRA, the experimental results are in good agreement with the calculated results by the Dubrova's method. 2) In case of AB, the results of the Dubrova's method are very inconsistent with those of model test, where as th method 9.here Chang's idea is applied, corresponds well, even though there is a small deviation.

  • PDF

Clinical assessment of the efficacy of supraglottic airway devices compared with endotracheal tubes in cats during volume-controlled ventilation

  • Niyatiwatchanchai, Nutawan;Thengchaisri, Naris
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.27.1-27.10
    • /
    • 2020
  • The efficacies of a supraglottic airway device (SGAD) and an endotracheal tube (ETT) in cats under general anesthesia with volume-controlled ventilation (VCV) were compared. Thirty healthy cats were randomly allocated for airway control using either an SGAD or an ETT. Five tidal volumes (6, 8, 10, 12, and 14 mL/kg) were randomly tested, and respiratory rates were adjusted to achieve a minute ventilation of 100 mL/kg/min. The dose of propofol necessary to insert the SGAD or ETT, the static respiratory pressure, leakage during VCV, and end tidal CO2 (ETCO2) were recorded. Dosages of propofol and static respiratory measurements for the SGAD and ETT groups were compared using a t-test. The distribution of leakages and hypercapnia (ETCO2 > 45 mmHg) were compared using Fisher's exact test. A significance level of p < 0.05 was established. No significant difference in dose of propofol was observed between the SGAD and ETT groups (7.1 ± 1.0, 7.3 ± 1.7 mg/kg; p = 0.55). Static resistance pressure of the SGAD (22.0 ± 8.1 cmH2O/L/sec) was significantly lower than that of the ETT (36.6 ± 12.9 cmH2O/L/sec; p < 0.01). Of the 75 trials, leakage was more frequent when using an SGAD (8 events) than when using an ETT (1 event; p = 0.03). Hypercapnia occurred more frequently with SGAD (18 events) than with ETT (3 events; p < 0.01). Although intubation with an ETT is the gold standard in small animal anesthesia, the use of an SGAD can reduce airway resistance and the work of breathing. Nonetheless, SGAD had more dead space and the tidal volume for VCV needs adjustment.

Development of Pressure Sensitive Paint(PSP) technique for low-speed flows and its application (아음속 저속 유동용 Pressure Sensitive Paint의 개발과 응용)

  • Kang, Jong-Hoon;Lee, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.12-17
    • /
    • 2004
  • The PSP technique has been used to measure pressure distribution on model surfaces ins high-speed flows. The objective of this study is to develop a PSP technique which can be applied to low-speed aerodynamic flows. Four different PSP formulations including two porphyrins (PtOEP and PtTFPP) and two polymers (Poly(TMSP) and RTV-118) were tested and the performance of each combination was evaluated. In a static calibration, the luminescent intensity of the PSP coatings was measured from 0kPa to 11kPa with 0.5, 1, 2kPa increments. Among 4 PSP formulations tested, the combination of PtOEP and RTV-118 shows the best performance. The developed PSP technique was applied to an oblique impinging jet to measure the pressure field distribution on the impinging plate.

Unsteady Flow Fields in a Rotor Blade Passage by Wake Passing (회전익 채널내 후류장에 의한 비정상 유동특성에 관한 연구)

  • Kim, Youn J.;Jeon, Y.-R
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.16-23
    • /
    • 1999
  • The characteristic of unsteady flowfields on gas turbine, particularly on a rotor blade surface has been numerically investigated. The unsteady flow in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid flow approach, and solved by Euler equations using a time accurate marching scheme. Unsteady flow in the blade passage is induced by periodically moving a wake model across the passage inlet. The wake model used in this study is the Gaussian wate model in which the wake flow is assumed to be parallel with uniform static pressure and uniform relative total enthalpy. Numerical results show that for the case of Ps/Pr=1.5, the velocity and pressure distribution on the blade surfaces have much more complex profiles than for the case of Ps/Pr=1.0.

  • PDF

A Study on Flow Characteristics of Confined Circular Jet within Pipe (이중원관 구속제트의 유동특성에 관한 연구)

  • Seo M. S.;Choi J. W.;Lee Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.136-142
    • /
    • 1997
  • The present study is aimed to investigate flow characteristics of confined jet flow within circular pipe. Numerical method based upon revised SOLA scheme which secures conservation form of convective terms on irregular grids by interpolating the variables appearing in staggered meshes is adopted on cylindrical coordinate formation. Computation was carried out for two kinds of Reynolds number, $10^5\;and\;1.5{\times}10^5$ defined by diameter of outer pipe and time-mean driving jet velocity. Results show that periodic vortex shedding from the jet mixing layer is profound and related unsteady flow characteristics prevail over the entire region. Spatial distribution of pressure and kinetic energy, fluctuation of static wall pressure, together with radial velocity components are examined in terms of instantaneous and time-mean point of views.

  • PDF

Study on the Rate-of-Loading by the Differential Pressure of Motor Operated Gate Valves in Opening Stroke (모터구동 게이트밸브 열림행정시 차압 작용에 의한 부하율 연구)

  • Kim, Dae Woong;Park, Sung Ken;Jeoung, Rae Hyuck;Lee, Do Hwan;Hong, Sung Yull
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.166-171
    • /
    • 2004
  • The Rate-of-Loading(ROL) effect of motor operated gate valves causes a decrease in the thrust delivered at a specific torque by the actuator under dynamic flow ${\Delta}$P conditions as compared to the no-flow, static conditions. This effect needs to be studied for the quantitative evaluation of motor operated gate valve operability. This study is performed to verify the validity for the application of ROL in the evaluation of operability of motor operated gate valves for the opening stroke. The ROL is assessed on the basis of in-situ test data for the opening and closing strokes. The results show that the distribution of the ROL for the operling sake has a tendency to the negative value when DP is higher than 150psid.

  • PDF

An Analysis for Failure Mechanisms and Strength Evaluation on Brazed Joint (브레이징 접합부의 강도평가 및 고장분석)

  • Kang Ki-Weon;Shim Hee-Jin;Lee Byung-Jei;Jhang Kyung-Yung;Kim Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1298-1304
    • /
    • 2006
  • The present paper is aiming at the evaluation for failure mechanisms and static strength of brazed joints used in household electronics. For these purposes, the failure analysis was performed on the various brazed joints, through the bursting, the micro-Victors hardness tests and 3-dimensional X-ray technique. The failure modes of brazed joints were classified into two different types, based on the results of bursting pressure test by means of self-designed internal-pressure testing machine. Their failure mechanism was dependent on the relationship between heat effect occurred in manufacturing process and internal flaws such as incomplete penetration and pin hole. Also, a finite element analysis was performed to evaluate the stress distribution with respect to the heat and the internal flaws.

Low Temperature Test of HWR Cryomodule

  • Kim, Heetae;Kim, Youngkwon;Lee, Min Ki;Park, Gunn-Tae;Kim, Wookang
    • Applied Science and Convergence Technology
    • /
    • v.25 no.3
    • /
    • pp.47-50
    • /
    • 2016
  • Low temperature test for half-wave resonator (HWR) cryomodule is performed at the superfluid helium temperature of 2 K. The effective temperature is defined for non-uniform temperature distribution. Helium leak detection techniques are introduced for cryogenic system. Experimental set up is shown to make the low temperature test for the HWR cryomodule. The cooldown procedure of the HWR cryomodule is shown from room temperature to 2 K. The cryomodules is precooled with liquid nitrogen and then liquid helium is supplied to the helium reservoirs and cavities. The pressure of cavity and chamber are monitored as a function of time. The vacuum pressure of the cryomodule is not increased at 2 K, which shows leak-tight in the superfluid helium environment. Static heat load is also measured for the cryomodule at 2.5 K.

The optimal design by Micro On-Off Valve analysis (Micro On-Off Valve 해석에 의한 최적 설계)

  • Kim D.S.;Park S.W.;Koh C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.285-290
    • /
    • 2005
  • Micro On-Off valves are currently recognized as the core technology in the fields of the micro fluid chip fur medical applications and production lines of semi-conduct chip. Micro valves that operate by compressed air need the high-speed responsibility, repeatability, the absorbability and the uniform pressure by the poppet. In this study, Micro On-Off valves that posses the high-speed responsibility and the high rate of flow have designed and analyzed through the law of equivalent magnetic circuit and Finite Element Method (FEM) respectively. In case of poppet, Flow field characteristic was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D distribution curve of the force by working the front poppet.

  • PDF

Experimental and numerical study on viscoelastic behavior of polymer during hot embossing process (핫엠보싱 공정의 폴리머 점탄성 거동에 대한 연구)

  • Song, N.H.;Son, J.W.;Rhim, S.H.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.191-194
    • /
    • 2007
  • In hot embossing lithography which has shown to be a good method to fabricate polymeric patterns for IT and bio components, it is very important to determine the proper process conditions of pressure, temperature, and time. It is also a key factor for predicting the optical properties of final product to calculate residual stress distribution after the embossing process. Therefore, to design the optimum process with right conditions, the ability to predict viscoelastic behavior of polymer during and after the hot embossing process is required. The objective of the present investigation is to establish simulation technique based on constitutive modeling of polymer with experiments. To analyze deformation behavior of viscoelastic polymer, the large strain material properties were obtained from quasi-static compression tests at different strain rates and temperatures and also stress relaxation tests were executed. With this viscoelastic material model, finite element simulation of hot embossing was executed and stress distribution is obtained. Proper process pressure is very important to predict the defect and incomplete filling.

  • PDF