• Title/Summary/Keyword: Static Node

Search Result 203, Processing Time 0.021 seconds

A hybrid 8-node hexahedral element for static and free vibration analysis

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.571-590
    • /
    • 2005
  • An 8 node assumed stress hexahedral element with rotational degrees of freedom is proposed for static and free vibration analyses. The element formulation is based directly on an 8-node element. This direct formulation requires fewer computations than a similar element that is derived from an internal 20-node element in which the midside degrees of freedom are eliminated by expressing them in terms of displacements and rotations at corner nodes. The formulation is based on Hellinger-Reissner variational principle. Numerical examples are presented to show the validity and efficiency of the present element for static and free vibration analysis.

A Study on Buffer Node for QoS Quarantee in Static Ad Hoc Networks (Static Ad Hoc 망에서 버퍼 노드를 이용한 QoS 향상 기법)

  • Kim, Hyo;Park, Sang-jun;Kim, Byung-Gi
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.219-223
    • /
    • 2003
  • A lot of researches have been done on supporting QoS in the mobile networks and ad hoc network architectures, but most of them are not suitable in the static ad hoc environment. Most Research in mobile ad hoc networks has been devoted to routing protocol since they are fundamantal to the technology for improving QoS. In mobile ad hoc networks, QoS means not only fast speed and reliable transmission but reliable node. Needless to say, general QoS is serious question. In this paper, we enunciate the proposition to reduce network load and prevent node expire using buffer node.

  • PDF

Game Theoretic Modeling for Mobile Malicious Node Detection Problem in Static Wireless Sensor Networks

  • Ho, Jun-Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.238-242
    • /
    • 2021
  • Game theory has been regarded as a useful theoretical tool for modeling the interactions between distinct entities and thus it has been harnessed in various research field. In particular, research attention has been shown to how to apply game theory to modeling the interactions between malign and benign entities in the field of wireless networks. Although various game theoretic modeling work have been proposed in the field of wireless networks, our proposed work is disparate to the existing work in the sense that we focus on mobile malign node detection problem in static wireless sensor networks. More specifically, we propose a Bayesian game theoretic modeling for mobile malign node detection problem in static wireless sensor networks. In our modeling, we formulate a two-player static Bayesian game with imperfect information such that player 1 is aware of the type of player 2, but player 2 is not aware of the type of player 1. We use four strategies in our static Bayesian game. We obtain Bayesian Nash Equilibria with pure strategies under certain conditions.

Exploration of static and free vibration resistance topologically optimal beam structure shapes using density design variables. (재료밀도 설계변수를 이용한 정적 및 자유진동 저항 위상최적 보의 형상 탐색에 관한 연구)

  • Lee, Dongkyu;Shin, Soo Mi
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.57-64
    • /
    • 2024
  • This study numerically compares optimum solutions generated by element- and node-wise topology optimization designs for free vibration structures, where element-and node-wise denote the use of element and nodal densities as design parameters, respectively. For static problems optimal solution comparisons of the two types for topology optimization designs have already been introduced by the author and many other researchers, and the static structural design is very common. In dynamic topology optimization problems the objective is in general related to maximum Eigenfrequency optimization subject to a given material limit since structures with a high fundamental frequency tend to be reasonable stiff for static loads. Numerical applications topologically maximizing the first natural Eigenfrequency verify the difference of solutions between element-and node-wise topology optimum designs.

SEC Approach for Detecting Node Replication Attacks in Static Wireless Sensor Networks

  • Sujihelen, L.;Jayakumar, C.;Senthilsingh, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2447-2455
    • /
    • 2018
  • Security is more important in many sensor applications. The node replication attack is a major issue on sensor networks. The replicated node can capture all node details. Node Replication attacks use its secret cryptographic key to successfully produce the networks with clone nodes and also it creates duplicate nodes to build up various attacks. The replication attacks will affect in routing, more energy consumption, packet loss, misbehavior detection, etc. In this paper, a Secure-Efficient Centralized approach is proposed for detecting a Node Replication Attacks in Wireless Sensor Networks for Static Networks. The proposed system easily detects the replication attacks in an effective manner. In this approach Secure Cluster Election is used to prevent from node replication attack and Secure Efficient Centralized Approach is used to detect if any replicated node present in the network. When comparing with the existing approach the detection ratio, energy consumption performs better.

On the Modification of Gauss Integral Point of 6 Node Two Dimensional Isoparametric Element -Linear and Nonlinear Static and Dynamic Bending Analyses- (6절점 2차원 Isoparametric요소의 가우스적분점 수정에 관하여 -선형, 비선형의 정적 및 동적 굽힘해석-)

  • 김정운;정래훈;권영두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3007-3019
    • /
    • 1993
  • For the same configuration, the stiffness of 6-node two dimensional isoparametric is stiffer than that of 8-node two dimensional isoparametric element. This phenomenon may be called 'Relative Stiffness Stiffening Phenomenon.' In this paper, the relative stiffness stiffening phenomenon was studied, and could be corrected by modifying the position of Gauss integral points used in the numerical integration of the stiffness matrix. For the same deformation (bending) energy of 6-node and 8-node two dimensional isoparametric elements, Gauss integral points of 6-node element have to move closer, in comparison with those of 8-node element, in the case of numerical integration along the thickness direction.

Static and Dynamic Analyses of Pure Bending Problems of Composite Plates using Non-Conforming 3-Dimensional 8-Node Solid Element (3차원 8절점 비적합 고체요소에 의한 복합재판의 순수굽힘문제의 정적.동적해석)

  • Yun, Tae-Hyeok;Gwon, Yeong-Du
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.1-21
    • /
    • 1998
  • In this paper, a non-conforming 3-D 8-node solid element(MQM10) has beets applied to the analyses of static and dynamic bending problems of laminated composite plates The QM10 element exhibits stiffer bending stiffness which is caused by the reduction of degree of freedom from Q11 element. As an effective way to correct the relative stiffness stiffening phenomenon the modification of Gauss sampling points for composite plates is proposed. The quantity of modification is a function of material properties. Also, another two modified equations are obtained, one is modification for stress, and the other is modification of coefficient of shear modulus in free vibration. It is noted that MQM10 element can analyse the static and free vibration problems of various 3-dimensional composite plates composed of unidirectional laminae, woven laminae or braided laminae. The results of MQM10 element are in good agreement with those of 20-node element.

  • PDF

A New Method for Monitoring Local Voltage Stability using the Saddle Node Bifurcation Set in Two Dimensional Power Parameter Space

  • Nguyen, Van Thang;Nguyen, Minh Y.;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.206-214
    • /
    • 2013
  • This paper proposes a new method for monitoring local voltage stability using the saddle node bifurcation set or loadability boundary in two dimensional power parameter space. The method includes three main steps. First step is to determine the critical buses and the second step is building the static voltage stability boundary or the saddle node bifurcation set. Final step is monitoring the voltage stability through the distance from current operating point to the boundary. Critical buses are defined through the right eigenvector by direct method. The boundary of the static voltage stability region is a quadratic curve that can be obtained by the proposed method that is combining a variation of standard direct method and Thevenin equivalent model of electric power system. And finally the distance is computed through the Euclid norm of normal vector of the boundary at the closest saddle node bifurcation point. The advantage of the proposed method is that it gets the advantages of both methods, the accuracy of the direct method and simple of Thevenin Equivalent model. Thus, the proposed method holds some promises in terms of performing the real-time voltage stability monitoring of power system. Test results of New England 39 bus system are presented to show the effectiveness of the proposed method.

Static and Dynamic Analyses of Bending Problems Using 3-Dimensional 10-Node Equivalent Element (3차원 10절점-상당요소에 의한 굽힘문제의 정적.동적해석)

  • 권영두;윤태혁
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.117-130
    • /
    • 1997
  • In this paper, a modified 10-node equivalent solid element(MQM10 element), which has smallest degrees of freedom among 3-dimensional solid elements accounting bending deformation as well as extensional and shear deformations of isotropic plates, is proposed. The proposed MQM10 element exhibits stiffer bending stiffness due to the reduction of degrees of freedom from 20-node element or Q11 element. As an effective way to correct the relative stiffness stiffening phenomenon, the modification equation of Gauss sampling points is proposed. The quantity of modification is a function of Poisson's ratio. The effectiveness of MQM10 element is tested by applying it to several examples. It is noted that the results of static and free vibration analysis of isotropic plates using MQM10 elements show a good agreement with those using 20-node element.

  • PDF

Distribution of Inter-Contact Time: An Analysis-Based on Social Relationships

  • Wei, Kaimin;Duan, Renyong;Shi, Guangzhou;Xu, Ke
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.504-513
    • /
    • 2013
  • Communication in delay tolerant networks (DTNs) relies on message transport by mobile nodes, and a correct understanding of the node mobility characteristics is therefore crucial to the design of an efficient DTN routing protocol. However, previous work has mainly focused on uncovering all behaviors of node movement, which is not conducive to accurately detecting the specific movement characteristics of a different node. In this paper, we seek to address this problem based on a consideration of social relationships. We first consider social ties from both static and dynamic perspectives. For a static perspective, in addition to certain accidental events, social relations are considered for a long time granularity and tend to be stable over time. For a dynamic perspective, social relations are analyzed in a relatively short time granularity and are likely to change over time. Based on these perspectives, we adopted different efficient approaches to dividing node pairs into two classes, i.e., familiar and unfamiliar pairs. A threshold approach is used for static social ties whereas a density-based aggregation method is used for dynamic social relationships. Extensive experimental results show that both familiar and unfamiliar node pairs have the same inter-contact time distribution, which closely follows a power-law decay up to a certain point, beyond which it begins to exponentially decay. The results also demonstrate that the inter-contact time distribution of familiar pairs decays faster than that of unfamiliar pairs, whether from a static or dynamic perspective. In addition, we also analyze the reason for the difference between the inter-contact time distributions of both unfamiliar and familiar pairs.