• Title/Summary/Keyword: Static Equilibrium Analysis

Search Result 178, Processing Time 0.025 seconds

Study of numerical analysis and experiment for composite pressure hull on buckling pressure (외압을 받는 복합재 셸의 좌굴해석을 위한 실험 및 수치 해석 연구)

  • Jung H. Y.;Cho J. R.;Bae W. B.;Kwon J. H.;Choi J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.410-413
    • /
    • 2005
  • The results of an experimental and analytical study of composite pressure hull on buckling pressure are presented for LRN 300. Composite tensile test was done to know the composite material properties applied FE analysis for URN composite. We predicted the buckling and post buckling analysis of composite laminated cylindrical panels under external compression by using ABAQUS /Standard[Ver 6.4]. To obtain nonlinear static equilibrium solutions for unstable problems, where the load-displacement response can exhibit the type of nonlinear buckling behavior, during periods of the response, the load and/or the displacement may decrease as the solution evolves, used the modified Riks method. The modified Riks method is an algorithm that allows effective solution of such cases [7]. Experiments were conducted to verify the validation of present analysis for cross-ply laminated shells. The shells considered in the study have two different lamination patterns, $[{\pm}45/0/90]_{18s\;and}\;[/0/90]_{18s}$. Cylindrical panel of experiment and analysis have the radius of 200mm, length of 210mm and 60 degree of cutting angle. The critical load from experiment is $69\%$ of that of numerical analysis, because the fracture of matrix was generated before buckling. So URN 300 is not proper to use at the condition under high external pressue.

  • PDF

Evaluation of the Numerical Liquefaction Model Behavior with Drainage Condition (배수조건에 따른 액상화 수치모델의 거동평가)

  • Lee, Jin-Sun;Kim, Seong-Nam;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.63-74
    • /
    • 2019
  • Numerical liquefaction model and response history analysis procedure are verified based on dynamic centrifuge test results. The test was a part of the Liquefaction Experiments Analysis Project (LEAP). The model ground was formed inside of rigid box by using the submerged Ottawa F65 sand with a relative density of 55% and 5° of surface inclination. A tapered sinusoidal wave with a frequency of 1 Hz was applied to the base of the model box. Numerical analyses were performed by two dimensional finite difference method in prototype scale. The soil is modeled to show hysteretic behavior before shear failure, and Mohr-Coulomb model is applied for shear failure criterion. Byrne's liquefaction model was applied to track the changes in pore pressure due to cyclic loading after static equilibrium. In order to find an appropriate flow condition for the liquefaction analysis, numerical analyses were performed both in drained and undrained condition. The numerical analyses performed under the undrained condition showed good agreement with the centrifuge test results.

Aerodynamic flutter analysis of a new suspension bridge with double main spans

  • Zhang, W.M.;Ge, Y.J.;Levitan, M.L.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.187-208
    • /
    • 2011
  • Based on the ANSYS, an approach of full-mode aerodynamic flutter analysis for long-span suspension bridges has been presented in this paper, in which the nonlinearities of structure, aerostatic and aerodynamic force due to the deformation under the static wind loading are fully considered. Aerostatic analysis is conducted to predict the equilibrium position of a bridge structure in the beginning, and then flutter analysis of such a deformed bridge structure is performed. A corresponding computer program is developed and used to predict the critical flutter wind velocity and the corresponding flutter frequency of a long-span suspension bridge with double main span. A time-domain analysis of the bridge is also carried out to verify the frequency-domain computational results and the effectiveness of the approach proposed in this paper. Then, the nonlinear effects on aerodynamic behaviors due to aerostatic action are discussed in detail. Finally, the results are compared with those of traditional suspension bridges with single main span. The results show that the aerostatic action has an important influence on the flutter stability of long-span suspension bridges. As for a suspension bridge with double main spans, the flutter mode is the first anti-symmetrical torsional vibration mode, which is also the first torsional vibration mode in natural mode list. Furthermore, a double main-span suspension bridge is better in structural dynamic and aerodynamic performances than a corresponding single main-span structure with the same bridging capacity.

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.

Partial Confinement Utilization for Rectangular Concrete Columns Subjected to Biaxial Bending and Axial Compression

  • Abd El Fattah, Ahmed M.;Rasheed, Hayder A.;Al-Rahmani, Ahmed H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.135-149
    • /
    • 2017
  • The prediction of the actual ultimate capacity of confined concrete columns requires partial confinement utilization under eccentric loading. This is attributed to the reduction in compression zone compared to columns under pure axial compression. Modern codes and standards are introducing the need to perform extreme event analysis under static loads. There has been a number of studies that focused on the analysis and testing of concentric columns. On the other hand, the augmentation of compressive strength due to partial confinement has not been treated before. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength of concrete. Accordingly, the ultimate eccentric confined strength is gradually reduced from the fully confined value $f_{cc}$ (at zero eccentricity) to the unconfined value $f^{\prime}_c$ (at infinite eccentricity) as a function of the ratio of compression area to total area of each eccentricity. This approach is used to implement an adaptive Mander model for analyzing eccentrically loaded columns. Generalization of the 3D moment of area approach is implemented based on proportional loading, fiber model and the secant stiffness approach, in an incremental-iterative numerical procedure to achieve the equilibrium path of $P-{\varepsilon}$ and $M-{\varphi}$ response up to failure. This numerical analysis is adapted to assess the confining effect in rectangular columns confined with conventional lateral steel. This analysis is validated against experimental data found in the literature showing good correlation to the partial confinement model while rendering the full confinement treatment unsafe.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to the Dynamic Response Analysis of Axisymmetric Shell- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(II) -축대칭 쉘의 동적 응답 해석을 중심으로 -)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.74-84
    • /
    • 1996
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. For developing a program to analyze the dynamic response of an axisymmetric shell in this study, the material nonlinearity effect on the dynamic response was formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion was numerically solved by a central difference scheme. A complete finite element program has been developed and the results obtained by it are compared with those in the references 1 and 2. The results are in good agreement with each other. As a case study of its application, the developed program was applied to a dynamic response analysis of a nuclear reinforced concrete containment structure. The results obtained from the' numerical examples are summarized as follows : 1. The dynamic magnification factor of the displacement and the stress were unrelated with the concrete strength. 2. As shown by the results that the displacement dynamic magnification factor were form 1.7 to 2.3 and the stress dynamic magnification factor from 1.8 to 2.5, the dynamic magnification factor of stress were larger than that of displacement. 3. The dynamic magnification factor of stress on the exterior surface was larger than that on the interior surface of the structure.

  • PDF

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.

Structural damage detection through longitudinal wave propagation using spectral finite element method

  • Kumar, K. Varun;Saravanan, T. Jothi;Sreekala, R.;Gopalakrishnan, N.;Mini, K.M.
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.161-183
    • /
    • 2017
  • This paper investigates the damage identification of the concrete pile element through axial wave propagation technique using computational and experimental studies. Now-a-days, concrete pile foundations are often common in all engineering structures and their safety is significant for preventing the failure. Damage detection and estimation in a sub-structure is challenging as the visual picture of the sub-structure and its condition is not well known and the state of the structure or foundation can be inferred only through its static and dynamic response. The concept of wave propagation involves dynamic impedance and whenever a wave encounters a changing impedance (due to loss of stiffness), a reflecting wave is generated with the total strain energy forked as reflected as well as refracted portions. Among many frequency domain methods, the Spectral Finite Element method (SFEM) has been found suitable for analysis of wave propagation in real engineering structures as the formulation is based on dynamic equilibrium under harmonic steady state excitation. The feasibility of the axial wave propagation technique is studied through numerical simulations using Elementary rod theory and higher order Love rod theory under SFEM and ABAQUS dynamic explicit analysis with experimental validation exercise. Towards simulating the damage scenario in a pile element, dis-continuity (impedance mismatch) is induced by varying its cross-sectional area along its length. Both experimental and computational investigations are performed under pulse-echo and pitch-catch configuration methods. Analytical and experimental results are in good agreement.

Effect of Coning Combinations on Working Performances of Wavy Mechanical Face Seal (코닝 조합이 물결 프로파일이 가공된 미케니컬 페이스 실의 작동 성능에 미치는 영향)

  • Kim, Dong-Wook;Jin, Sung-Sik;Kim, Jun-Ho;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.70-80
    • /
    • 2012
  • Non-contact type mechanical face seals installed in mechanical systems prevent leakage of working fluid using thin working fluid film between stator and rotor. For that purpose, various kinds of surface profiles, grooves and conings have been applied on seal surfaces of stator and rotor to generate hydrodynamic and hydrostatic pressure. The thickness distribution of working fluid film is one of important factors which affect the working performances of mechanical face seal, and it is strongly affected by the surface height profiles of stator and rotor. Therefore, appropriate design of surface height profiles of stator and rotor is necessary to optimize the working performances and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to estimate the working performances of wavy mechanical face seals which have 36 coning combinations. As results, minimum thickness of working fluid film, leakage volume of working fluid and friction torque in static equilibrium condition of mechanical face seal, and stiffness of working fluid film were obtained. The results show that the working performances of mechanical face seal were affected by the coning combinations which can change the thickness distribution of working fluid film and pressure distribution in sealing region of mechanical face seal.

Semi-analytical Annular Mindlin Plate Element for Out-of-plane Vibration Analysis of Thick Disks (두꺼운 디스크의 면외 진동 해석을 위한 준-해석적 환상 민드린 평판 요소)

  • Kim, Chang-Boo;Cho, Hyeon Seok;Beom, Hyeon Gyu
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.588-596
    • /
    • 2012
  • This paper presents a new semi-analytical annular Mindlin plate element with which out-of-plane natural vibration of thick disks can be analyzed simply, efficiently, and accurately through FEM by including effects of rotary inertia and transverse shear deformation. Using static deformation modes which are exact solutions of equilibrium equations of annular Mindlin plate, the element interpolation functions, stiffness and mass matrices corresponding to each number of nodal diameters are derived. The element is capable of representing out-of-plane rigid-body motions exactly and free from shear locking. Natural frequencies of uniform and multi-step disks with or without concentric ring support are analyzed by applying the presented element. Such results are compared with theoretical predictions of previous works or FEA results obtained by using two-dimensional shell element to investigate the convergence and accuracy of the presented element.