• 제목/요약/키워드: Static Component-dominated Beam

검색결과 3건 처리시간 0.025초

Finite element formulation and analysis of Timoshenko beam excited by transversely fluctuating supports due to a real seismic wave

  • Kim, Yong-Woo;Cha, Seung Chan
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.971-980
    • /
    • 2018
  • Using the concept of quasi-static decomposition and using three-noded isoparametric locking-free element, this article presents a formulation of the finite element method for Timoshenko beam subjected to spatially different time-dependent motions at supports. To verify the validity of the formulation, three fixed-hinged beams excited by the real seismic motions are examined; one is a slender beam, another is a stocky one, and the other is an intermediate one. The numerical results of time histories of motions of the three beams are compared with corresponding analytical solutions. The internal loads such as bending moment and shearing force at a specific time are also compared with analytic solutions. These comparisons show good agreements. The comparisons between static components of the internal loads and the corresponding total internal loads show that the static components predominate in the stocky beam, whereas the dynamic components predominate in the slender one. Thus, the total internal loads of the stocky beam, which is governed by static components, can be predicted simply by static analysis. Careful numerical experiments indicate that the fundamental frequency of a beam can be used as a parameter identifying such a stocky beam.

Analytic solution of Timoshenko beam excited by real seismic support motions

  • Kim, Yong-Woo
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.247-258
    • /
    • 2017
  • Beam-like structures such as bridge, high building and tower, pipes, flexible connecting rods and some robotic manipulators are often excited by support motions. These structures are important in machines and structures. So, this study proposes an analytic method to accurately predict the dynamic behaviors of the structures during support motions or an earthquake. Using Timoshenko beam theory which is valid even for non-slender beams and for high-frequency responses, the analytic responses of fixed-fixed beams subjected to a real seismic motions at supports are illustrated to show the principled approach to the proposed method. The responses of a slender beam obtained by using Timoshenko beam theory are compared with the solutions based on Euler-Bernoulli beam theory to validate the correctness of the proposed method. The dynamic analysis for the fixed-fixed beam subjected to support motions gives useful information to develop an understanding of the structural behavior of the beam. The bending moment and the shear force of a slender beam are governed by dynamic components while those of a stocky beam are governed by static components. Especially, the maximal magnitudes of the bending moment and the shear force of the thick beam are proportional to the difference of support displacements and they are influenced by the seismic wave velocity.

정(${\sharp}$)자형 더블보-기둥 접합부의 전단강도에 대한 4변 구속의 영향 (Effects of Four Sides Constraint for Shear Strength of ${\sharp}$ Shape Double Beam-Column Connections)

  • 김량운;정창용;이수권;김상식;최광호;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.209-212
    • /
    • 2008
  • 건설공사에서 지하공사의 DBS(Double Beam as Struts)공법은 지하 수평부재의 공장제작 및 모듈화 된 부재 생산을 통해 공기를 단축할 수 있으며, 수평재를 영구부재로 사용할 수 있는 장점이있다. 그러나 DBS공법의 구성요소로서 시공 및 사용 시 수평부재에 작용하는 수직하중을 기둥에 전달하기 위하여 개발된 정(${\sharp}$)자형 더블보-기둥 접합부는 복잡한 다축 응력상태의 전단에 의해 지배를 받는다. 이 연구에서는 정(${\sharp}$)자형 더블보-기둥 접합부의 전단파괴 기구와 구속철판 두께에 따른 전단내력 증가를 확인하기 위해 총 7 개의 실험체를 제작하여 1 방향 정적실험을 수행하였다. 실험결과, 실험체는 모두 취성파괴 되었고 실험의 지지조건에 따른 보작용과 아치작용에 의한 전단파괴 양상을 보였으며 철판의 구속이 슬래브의 전단내력을 1.06${\sim}$1.48 배 증가시키는 것으로 나타났다. 또한, 2 방향 구속철판이 동일하지 않은 경우가 구속철판이 동일한 경우보다 전단내력이 더욱 증가한 것으로 나타나 구속철판이 동일하지 않은 경우가 효율적이었다.

  • PDF