• 제목/요약/키워드: Static Aeroelastic

검색결과 42건 처리시간 0.024초

Design and Vibratory Loads Reduction Analysis of Advanced Active Twist Rotor Blades Incorporating Single Crystal Piezoelectric Fiber Composites

  • Park, Jae-Sang;Shin, Sang-Joon;Kim, Deog-Kwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권2호
    • /
    • pp.18-33
    • /
    • 2008
  • This paper presents design optimization of a new Active Twist Rotor (ATR) blade and conducts its aeroelastic analysis in forward flight condition. In order to improve a twist actuation performance, the present ATR blade utilizes a single crystal piezoelectric fiber composite actuator and the blade cross-sectional layout is designed through an optimization procedure. The single crystal piezoelectric fiber composite actuator has excellent piezoelectric strain performance when compared with the previous piezoelectric fiber composites such as Active Fiber Composites (AFC) and Macro Fiber Composites (MFC). Further design optimization gives a cross-sectional layout that maximizes the static twist actuation while satisfying various blade design requirements. After the design optimization is completed successfully, an aeroelastic analysis of the present ATR blade in forward flight is conducted to confirm the efficiency in reducing the vibratory loads at both fixed- and rotating-systems. Numerical simulation shows that the present ATR blade utilizing single crystal piezoelectric fiber composites may reduce the vibratory loads significantly even with much lower input-voltage when compared with that used in the previous ATR blade. However, for an application of the present single crystal piezoelectric actuator to a full scaled rotor blade, several issues exist. Difficulty of manufacturing in a large size and severe brittleness in its material characteristics will need to be examined.

Aeroelastic investigation of a composite wind turbine blade

  • Rafiee, Roham;Fakoor, Mahdi
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.671-680
    • /
    • 2013
  • Static aeroelastic is investigated in a wind turbine blade. Imposed to different loadings, the very long and flexible structures of blades experience some changes in its preliminary geometry. This results in variations of aerodynamic loadings. An iterative approach is developed to study the interactions between structure and aerodynamics evaluating variations in induced stresses in presence of aeroelasticity phenomenon for a specific wind turbine blade. A 3D finite element model of the blade is constructed. Aerodynamic loading is applied to the model and deflected shape is extracted. Then, aerodynamic loadings are updated in accordance with the new geometry of the deflected blade. This process is repeated till the convergence is met. Different operational conditions consisting of stand-by, start-up, power production and normal shut-down events are investigated. It is revealed that stress components vary significantly in the event of power production at the rated wind speed; while it is less pronounced for the events of normal shut-down and stand-by.

스마트무인기 로터 블레이드 국산화 개발 (Localization Development of Rotor Blade for Smart Unmanned Aerial Vehicle)

  • 이명규
    • 항공우주기술
    • /
    • 제10권2호
    • /
    • pp.11-19
    • /
    • 2011
  • 스마트무인기 로터 블레이드의 국산화 개발이 수행되었다. 국산화 개발은 원소재와 물성치가 가장 유사한 국내 생산 복합소재의 선정, 새로운 소재의 물성치 데이터 구축을 위한 쿠폰시험, 블레이드 단면 물성치의 재계산, 공진, 정적/피로 강도, 공탄성 안정성의 구조동역학 설계요구조건에 대한 검증 등을 포함하며, 그 결과에 대하여 기술하였다. 또한 본 논문에서는 스마트무인기 국산화 블레이드 개발과정에서 개선된 공정에 대하여 간략히 기술하였다.

유전자 알고리즘을 이용한 복합재료 날개의 정적 공탄성 최적화 (Static Aeroelastic Optimization of a Composite Wing Using Genetic Algorithm)

  • 김동현;이인
    • Composites Research
    • /
    • 제13권2호
    • /
    • pp.61-71
    • /
    • 2000
  • 오늘날 항공기의 경량화를 위해 복합재료를 사용하는 것은 필수적인 설계 및 제작 요건이 되고 있다. 복합재료로 제작된 날개는 적층각에 따라 구조적 특성이 심하게 변화될 수 있기 때문에 설계시 최적의 적층각을 결정하는 것이 매우 중요한 문제이다. 따라서, 본 연구에서는 복합재료 날개의 적층각에 대한 정적 공탄성 최적화 연구를 수행하였다. 이를 위해 공력하중에 대한 복합재료 날개의 구조 평형상태를 구할 수 있는 정적 공탄성(하중재분포) 해석시스템을 개발하였으며, 유전자 알고리즘을 활용한 최적화 프로그램이 통합 개발되었다. 후퇴각이 있는 복합재료날개에 대하여 적층각 변화가 정적 공탄성 변형에 미치는 영향을 고찰하였으며, 구조 변형이 최소가 되는 경우의 최적 적층각 조건을 구하였다. 이를 토대로 실제 제작에 실용적인 적층각 조합에 대하여 정적 공탄성 특성을 최대화 할 수 있는 최적 적층각 조건이 제시되었다.

  • PDF

Reynolds number and scale effects on aerodynamic properties of streamlined bridge decks

  • Ma, Tingting;Feng, Chaotian
    • Wind and Structures
    • /
    • 제34권4호
    • /
    • pp.355-369
    • /
    • 2022
  • Section model test, as the most commonly used method to evaluate the aerostatic and aeroelastic performances of long-span bridges, may be carried out under different conditions of incoming wind speed, geometric scale and wind tunnel facilities, which may lead to potential Reynolds number (Re) effect, model scaling effect and wind tunnel scale effect, respectively. The Re effect and scale effect on aerostatic force coefficients and aeroelastic characteristics of streamlined bridge decks were investigated via 1:100 and 1:60 scale section model tests. The influence of auxiliary facilities was further investigated by comparative tests between a bare deck section and the deck section with auxiliary facilities. The force measurement results over a Re region from about 1×105 to 4×105 indicate that the drag coefficients of both deck sections show obvious Re effect, while the pitching moment coefficients have weak Re dependence. The lift coefficients of the smaller scale models have more significant Re effect. Comparative tests of different scale models under the same Re number indicate that the static force coefficients have obvious scale effect, which is even more prominent than the Re effect. Additionally, the scale effect induced by lower model length to wind tunnel height ratio may produce static force coefficients with smaller absolute values, which may be less conservative for structural design. The results with respect to flutter stability indicate that the aerodynamic-damping-related flutter derivatives 𝘈*2 and 𝐴*1𝐻*3 have opposite scale effect, which makes the overall scale effect on critical flutter wind speed greatly weakened. The most significant scale effect on critical flutter wind speed occurs at +3° wind angle of attack, which makes the small-scale section models give conservative predictions.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • 제27권6호
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화 (Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression)

  • 최원;박찬우;정성기;박현범
    • 한국항공우주학회지
    • /
    • 제43권7호
    • /
    • pp.601-608
    • /
    • 2015
  • 유연날개의 공력 및 구조 설계값을 설계 변수로 하여 정적 상태에서의 정적 공탄성해석 및 최적화를 수행하였다. 정적 공탄성해석과 최적화를 위해 상용 해석소프트웨어들이 연계된 강건한 다분야 최적설계 시스템을 개발하였다. 최적화 설계변수로는 가로세로비, 테이퍼비, 후퇴각과 날개 위아래 스킨 두께를 설정하였다. 전역적 다목적 최적화를 위해 실수기반 적응영역 다목적 유전자 알고리즘을 적용하였으며 계산시간을 줄이기 위해 메타모델로 서포트벡터회귀 기법을 적용하였다. 유연날개에 대한 파레토 결과 분석을 통해 최대 항속시간과 최소 중량에 대한 최적 결과를 확인하였다.

고고도 장기체공 항공기 날개의 다목적 최적화를 이용한 공력-구조 동시 설계 (Simultaneous Aero-Structural Design of HALE Aircraft Wing using Multi-Objective Optimization)

  • 김정화;전상욱;허도영;이동호
    • 한국항공우주학회지
    • /
    • 제39권1호
    • /
    • pp.50-55
    • /
    • 2011
  • 본 연구에서는 고고도 장기 체공 항공기 날개의 스팬과 주날개보의 형상을 설계변수로 동시에 고려하는 공력-구조 동시 설계를 수행하였다. 이 때 공기역학적 성능 최대화와 중량 최소화를 한 번에 수행하기 위해 다목적 최적화를 이용하였다. 설계 대상이 된 날개는 구조적 대변형이 발생되므로 전산유체역학과 유한요소법을 이용하여 비선형 정적 공탄성 해석을 수행하였다. 설계를 위한 해석에 요구되는 계산 비용을 감소시키기 위해 반응면을 구성하였으며 이를 위해 실험계획법이 이용되었다. 또한 본 연구에서는 대변형이 발생되지 않은 형상과 대변형이 발생한 형상의 공력 성능을 비교하여 대변형이 발생하는 경우 설계를 위해 반드시 변형이 고려되어야 함을 검증하였다.

Effect of countermeasures on the galloping instability of a long-span suspension footbridge

  • Ma, Ruwei;Zhou, Qiang;Li, Mingshui
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.499-509
    • /
    • 2020
  • The aeroelastic stability of a long-span suspension footbridge with a bluff deck (prototype section) was examined through static and dynamic wind tunnel tests using a 1:10 scale sectional model of the main girder, and the corresponding aerodynamic countermeasures were proposed in order to improve the stability. First, dynamic tests of the prototype sectional model in vertical and torsional motions were carried out at three attack angles (α = 3°, 0°, -3°). The results show that the galloping instability of the sectional model occurs at α = 3° and 0°, an observation that has never been made before. Then, the various aerodynamic countermeasures were examined through the dynamic model tests. It was found that the openings set on the vertical web of the prototype section (web-opening section) mitigate the galloping completely for all three attack angles. Finally, static tests of both the prototype and web-opening sectional models were performed to obtain the aerodynamic coefficients, which were further used to investigate the galloping mechanism by applying the Den Hartog criterion. The total damping of the prototype and web-opening models were obtained with consideration of the structural and aerodynamic damping. The total damping of the prototype model was negative for α = 0° to 7°, with the minimum value being -1.07%, suggesting the occurrence of galloping, while that of the web-opening model was positive for all investigated attack angles of α = -12° to 12°.

Wind-induced response and loads for the Confederation Bridge -Part I: on-site monitoring data

  • Bakht, Bilal;King, J. Peter C.;Bartlett, F.M.
    • Wind and Structures
    • /
    • 제16권4호
    • /
    • pp.373-391
    • /
    • 2013
  • This is the first of two companion papers that analyse ten years of on-site monitoring data for the Confederation Bridge to determine the validity of the original wind speeds and wind loads predicted in 1994 when the bridge was being designed. The check of the original design values is warranted because the design wind speed at the middle of Northumberland Strait was derived from data collected at shore-based weather stations, and the design wind loads were based on tests of section and full-aeroelastic models in the wind tunnel. This first paper uses wind, tilt, and acceleration monitoring data to determine the static and dynamic responses of the bridge, which are then used in the second paper to derive the static and dynamic wind loads. It is shown that the design ten-minute mean wind speed with a 100-year return period is 1.5% less than the 1994 design value, and that the bridge has been subjected to this design event once on November 7, 2001. The dynamic characteristics of the instrumented spans of the bridge including frequencies, mode shapes and damping are in good agreement with published values reported by others. The on-site monitoring data show bridge response to be that of turbulent buffeting which is consistent with the response predicted at the design stage.