• Title/Summary/Keyword: State-of-charge (SOC)

Search Result 231, Processing Time 0.02 seconds

Development of a Simulation Model based on CAN Data for Small Electric Vehicle (소형 전기자동차 CAN 데이터 기반의 시뮬레이션 모델 개발)

  • Lee, Hongjin;Cha, Junepyo
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.155-160
    • /
    • 2022
  • Recently, major developed countries have strengthened automobile fuel efficiency regulations and carbon dioxide emission allowance standards to curb climate change caused by global warming worldwide. Accordingly, research and manufacturing on electric vehicles that do not emit pollutants during actual driving on the road are being conducted. Several automobile companies are producing and testing electric vehicles to commercialize them, but it takes a lot of manpower and time to test and evaluate mass-produced electric vehicles with driving mileage of more than 300km on a per-charge. Therefore, in order to reduce this, a simulation model was developed in this study. This study used vehicle information and MCT speed profile of small electric vehicle as basic data. It was developed by applying Simulink, which models the system in a block diagram method using MATLAB software. Based on the vehicle dynamics, the simulation model consisted of major components of electric vehicles such as motor, battery, wheel/tire, brake, and acceleration. Through the development model, the amount of change in battery SOC and the mileage during driving were calculated. For verification, battery SOC data and vehicle speed data were compared and analyzed using CAN communication during the chassis dynamometer test. In addition, the reliability of the simulation model was confirmed through an analysis of the correlation between the result data and the data acquired through CAN communication.

Operation Algorithm for a Parallel Hybrid Electric Vehicle with a Relatively Small Electric Motor

  • Kyoungcheol Oh;Kim, Donghyeon;Kim, Talchol;Kim, Chulsoo;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • In this paper, operation algorithms for a parallel HEV equipped with a relatively small motor are investigated. For the HEV, the power assist and the equivalent fuel algorithms are proposed. In the power assist algorithm, an electric motor is used to assist the engine which provides the primary power source. Tn the equivalent fuel algorithm, the electric energy stored in the battery is considered to be an equivalent fuel, and an equivalent brake specific fuel consumption for the electric energy is proposed. From the equivalent fuel algorithm, distribution of the engine power and the motor power is determined to minimize the fuel consumption for a given battery state of charge (SOC) and a required vehicle power. It is found from the simulation results that the fuel economy and the final battery SOC depend on the motor discharge energy and it is the best way to charge the battery only by the regenerative braking, not by the engine to improve the overall fuel efficiency of the HEV with the relatively small motor.

A Study on the Transient Operation Algorithm in Micro-grid based on CVCF Inverter (CVCF 인버터 기반의 Micro-grid에 있어서 과도상태 운용알고리즘에 관한 연구)

  • Lee, Hu-Dong;Choi, Sung-Sik;Nam, Yang-Hyun;Son, Joon-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.526-535
    • /
    • 2018
  • Recently, in order to reduce the $CO_2$ emission in the island area, countermeasures to operate power system in a stable manner are being researched due to decrease of the operation rate in diesel generators and the increase of renewable energy sources. The phenomenon of energy sinking can be occurred if the output of renewable energy sources is larger than customer loads. Voltage of CVCF(constant voltage & constant frequency) battery could be increased rapidly according to the condition of SOC(state of charge) and blackout could be occurred due to shut-down of CVCF inverter, at carbon free island micro-grid based on the CVCF inverter. In order to overcome these problems, this paper proposes a transient operation algorithm in CVCF based micro-grid which in advance prevents shut-down of CVCF inverter during the energy sinking. And also this paper proposes the modeling of micro-grid including CVCF inverter, PV system, customer load using PSCAD/EMTDC S/W. From the results of micro-grid modeling based on the proposed algorithm, it is confirmed that CVCF based micro-grid can properly prevent shut-down of CVCF inverter according to SOC and battery voltage of CVCF inverter when energy sinking is occurred.

FUZZY TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

  • PU J.-H.;YIN C.-L.;ZHANG J.-W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.529-536
    • /
    • 2005
  • This paper presents a novel design of a fuzzy control strategy (FCS) based on torque distribution for parallel hybrid electric vehicles (HEVs). An empirical load-regulating vehicle operation strategy is developed on the basis of analysis of the components efficiency map data and the overall energy conversion efficiency. The aim of the strategy is to optimize the fuel economy and balance the battery state-of-charge (SOC), while satisfying the vehicle performance and drivability requirements. In order to accomplish this strategy, a fuzzy inference engine with a rule-base extracted from the empirical strategy is designed, which works as the kernel of a fuzzy torque distribution controller to determine the optimal distribution of the driver torque request between the engine and the motor. Simulation results reveal that compared with the conventional strategy which uses precise threshold parameters the proposed FCS improves fuel economy as well as maintains better battery SOC within its operation range.

Development of Low Cost, High-Performance Miniaturized Lithium-ion Battery Tester Using Raspberry Pi Zero

  • La, Phuong-Ha;Im, Hwi-Yeol;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.47-48
    • /
    • 2017
  • This paper presents a low-cost portable lithium battery parameter measuring and estimating the solution. In this method, lithium battery characteristics are monitored during discharging and charging cycles. The battery profile is analyzed, and its key parameters are estimated by GNU Octave running on Raspberry Pi Zero, a mini computer. The proposed method can measure and estimate the battery parameters for SOC and DOD estimation with reasonable accuracy as well as portability features.

  • PDF

A Study on Electromagnetic Emission of HEV's Gasoline and Electric Mode (HEV 차량내 내연기관과 전기모터 모드의 전자파 방사에 대한 고찰)

  • Kim, Sungbum;Woo, Hyungu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.12-19
    • /
    • 2018
  • This paper deals with the broadband electromagnetic emission test of a hybrid electric vehicle. The hybrid electric vehicle's powertrain system consists of an internal combustion engine and an EV traction motor. Depending on the SOC of the traction battery, these modes change automatically in the running state. The Korea electromagnetic compatibility regulations of KMVSS and UN WP.29 stipulated the evaluation method of hybrid electric vehicles. This study analyzes and compares two test results: internal combustion and electric motor mode. Some problems of test conditions are described and an improved test method is proposed for measuring broadband emissions of a hybrid electric vehicle. As a result, we expect this paper to be used as a consideration for improvement when test specifications are revised in the future.

Development of the Battery ECU for Hybrid Electric Vehicle (하이브리드 전기자동차용 배터리 ECU 개발)

  • Nam J.H.;Choi J.H.;Kim S.J.;Kim J.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.740-744
    • /
    • 2003
  • The development of electric vehicle has been accelerated by the recent 'California Initiative' which has required increasing proportions of new vehicle in Los Angeles area to be ZEV(Zero Emission Vehicles) But, because skill of battery is feeble, ZEV regulation was postponed but that is by CO2 restriction and environmental pollution problem the latest because do development require. In the electric vehicle and hybrid electric vehicle, the battery ECU(Battery Management System, BMS) is very important and an essential equipment. The accurate state of charge(SOC) is required for the battery for hybrid electric vehicles. This paper proposes SOC algorithm for the HEV based on the terminal voltage. Also, designed and analyzed battery ECU to apply on HEV.

  • PDF

Analysis of the Electrochemical Characteristics for a Li-Air Battery (리튬-공기(Li-Air) 배터리의 전기화학적 특성분석)

  • Kim, J.H.;Kim, M.S.;Tak, Y.S.
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.198-199
    • /
    • 2013
  • 본 논문에서는 리튬공기(Li-Air) 배터리를 소개하고 전기화학적 특성분석을 간단히 진행하였다. 우선, 리튬공기 배터리의 동작원리를 소개하고 기존 리튬이온(Li-Ion) 배터리와의 차이점을 제시하였다. 각 만방전압에 따른 배터리의 전기화학적 특성분석을 위해 방전용량 및 임피던스 특성커브를 분석하였다. 더불어, 향후 State-of-charge(SOC) 추정을 위한 데이터를 위해 Open-circuit voltage(OCV) 및 실제 충방전 전류 프로파일에 따른 충방전 전압을 분석하였다.

  • PDF

Li-ion Battery Charateristics for Electric Scooters (전기 스쿠터를 위한 Li-ion 배터리 특성)

  • Kim, Seunghwan;Kim, Hyosung
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.71-72
    • /
    • 2015
  • 배터리의 랜들 등가회로 모델은 기본적으로, 전달 저항 Rct, 전기 이중층 커패시턴스 Cdl, 내부저항 Ri, 그리고 개방회로전압 Voc의 4가지 파라미터로 구성 된다. 본 논문은 실험에 의해 리튬이온 배터리의 모델링을 위한 기본적 4가지 파라미터를 추출하고 운전조건에 따른 특성을 분석한다. 분석 결과를 이용하여 본 연구자에 의하여 제작된 전기 스쿠터의 SOC(State of Charge)를 추정하는 알고리즘을 제안한다.

  • PDF

Characterization analysis according to C-rate of Vanadium redox flow battery (C-rate에 따른 바나듐 레독스 플로우 배터리 특성분석)

  • Jang, So-Hee;Kim, Jong-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.178-179
    • /
    • 2016
  • 본 논문에서는 바나듐 레독스 플로우 배터리의 동작원리를 설명하고, C-rate에 따른 특성 분석을 하였다. 전해질 양이 18mL, 22mL일 때 0.1C, 0.3C, 0.5C, 0.7C, 0.9C, 1.0C로 전류의 크기에 변화를 주어 용량을 측정한 후 비교 분석하였다. 더불어 HPPC(Hybrid pulse power characterization) 실험에서 1.0C 일 때 잔존 용량(State-of-charge, SOC)의 변화에 따른 저항을 추출하였고 분석하였다. 그 결과 바나듐 레독스 플로우 배터리의 효율 분석을 위한 파라미터 값을 확인하였다.

  • PDF