• Title/Summary/Keyword: State space equation

Search Result 302, Processing Time 0.032 seconds

Supersonic Axisymmetric Minimum Length Nozzle Conception at High Temperature with Application for Air

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-30
    • /
    • 2008
  • When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect; its state equation remains always valid, except, it is named in more by calorically imperfect gas. The aim of this work is to trace the profiles of the supersonic axisymmetric Minimum Length Nozzle to have a uniform and parallel flow at the exit section, when the stagnation temperature is taken into account, lower than the dissociation threshold of the molecules, and to have for each exit Mach number and stagnation temperature shape of nozzle. The method of characteristics is used with the algorithm of the second order finite differences method. The form of the nozzle has a point of deflection and an initial angle of expansion. The comparison is made with the calorically perfect gas. The application is for air.

Transonic Magnetohydrodynamic Turbulence

  • LEE HYESOOK;RYU DONGSU;KIM JONGSOO;JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.321-323
    • /
    • 2001
  • Compressible, magnetohydrodynamic (MHD) turbulence in two dimension is studied through high-resolution, numerical simulations with the isothermal equation of state. First, hydrodynamic turbulence with Mach number $(M)_{rms}\;\~$1 is generated by enforcing a random force. Next, initial, uniform magnetic field of various strengths with Alfvenic Mach number Ma $\gg$ 1 is added. Then, the simulations are followed until MHD turbulence is fully developed. Such turbulence is expected to exist in a variety of astrophysical environments including clusters of galaxies. Although no dissipation is included explicitly in our simulations, truncation errors produce dissipation which induces numerical resistivity. It mimics a hyper-resistivity in our second-order accurate code. After saturation, the resulting flows are categorized as SF (strong field), WF (weak field), and VWF (very weak field) classes respectively, depending on the average magnetic field strength described with Alfvenic Mach number, $(Ma)_{rms}{\ge}1$, $(Ma)_{rms}{\~}1$, and $(Ma)_{rms}{\gg}1$. The characteristics of each class are discussed.

  • PDF

STABILITY REGION ESTIMATES FOR THE SDRE CONTROLLED ATTITUDE SYSTEMS IN SATELLITE FORMATION FLYING

  • Chang, In-Su;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2007.10a
    • /
    • pp.135-138
    • /
    • 2007
  • The present work is to estimate the stability region of the State-Dependent Riccati Equation (SDRE) controlled system, which is used for a decentralized coordinated attitude control in satellite formation flying. In this research, currently emerging methods which estimate region of attraction for the SDRE controllers are introduced and the methods are applied to attitude control systems. The results guarantee the stability of the given decentralized coordinated attitude control system in satellite formation flying.

  • PDF

편대비행 위성의 자세 동기화를 위한 SDRE 추적 제어기와 Hardware-In-the-Loop 시뮬레이션

  • Jeong, Jun-O;Park, Sang-Yeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.31.2-31.2
    • /
    • 2010
  • 편대비행 위성이 공동의 임무를 수행하기 위해서는 편대를 이루는 위성의 각기 다른 초기 오차와 다양한 외란 환경에서도 자세 동기화를 이룰 수 있는 기법이 필요하다. 이 연구에서는 편대비행위성의 자세 동기화를 위하여 비선형 시스템에 대한 준최적 제어기법인 SDRE(State-Dependent Riccati Equation)에 기반한 추적 제어기가 사용되었다. 반작용 휠이 포함된 위성의 자세 동역학이 SDRE 추적 제어기를 구성하는데 이용된다. 이를 Leader/Follower 편대비행 시스템에 적용하며, 기준 자세를 추적하는 Leader 위성의 자세를 Follower 위성이 추적하여 자세 동기화를 이룰 수 있다. MATLAB과 SIMULINK를 이용한 수치해석적 시뮬레이션으로 추적 제어기의 성능을 검증하였으며, 이에 대한 실시간 HIL(Hardware-In-the-Loop) 시뮬레이션이 수행되었다. 무중력 환경을 모사하는 에어베어링시스템과 세 개의 반작용 휠을 장착한 자세제어 HILS(Hardware-In-the-Loop Simulator)는 PC104 타입의 임베디드 컴퓨터에서 SIMULINK의 xPC Target을 이용한 실시간 시뮬레이션 환경을 제공하며, 이에 적용되는 SDRE 추적 제어기는 이산화되어 설계되었다. 또한 SDRE 추적 제어기에 대한 안정성을 보장하는 영역이 추정되어 위 추적 제어기가 위성 편대비행에 적합한 자세 동기화 기법임을 보였다.

  • PDF

Vibration Control of Stiffened Hull Structure Using MFC Actuator (MFC 작동기를 이용한 보강 Hull 구조물의 능동 진동 제어)

  • Jeon, Jun-Cheol;Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.643-649
    • /
    • 2011
  • This work presents an active vibration control of a stiffened hull structure using a flexible macro fiber composite(MFC) actuator. As first step, the governing equation of the hull structure is derived in a matrix form and its dynamic characteristics such as natural frequency are obtained via a finite element analysis(FEA). The natural frequencies obtained from the FEA are compared with those determined from experimental measurement. After formulating the control model in a state space representation, an optimal controller is designed in order to attenuate the vibration of the stiffened hull structure. The controller is then empirically realized through dSPACE and control responses are evaluated in time domain.

Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study

  • Ma, Gang;Chang, Xiao-Lin;Zhou, Wei;Ng, Tang-Tat
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.317-333
    • /
    • 2014
  • The study of the mechanical behavior of rockfill materials under three-dimensional loading conditions is a current research focus area. This paper presents a microscale numerical study of rockfill deformation and strength characteristics using the Combined Finite-Discrete Element Method (FDEM). Two features unique to this study are the consideration of irregular particle shapes and particle crushability. A polydisperse assembly of irregular polyhedra was prepared to reproduce the mechanical behavior of rockfill materials subjected to axial compression at a constant mean stress for a range of intermediate principal stress ratios in the interval [0, 1]. The simulation results, including the stress-strain characteristics, relationship between principal strains, and principal deviator strains are discussed. The stress-dilatancy behavior is described using a linear dilatancy equation with its material constants varying with the intermediate principal stress ratio. The failure surface in the principal stress space and its traces in the deviatoric and meridian plane are also presented. The modified Lade-Duncan criterion most closely describes the stress points at failure.

Model-independent Constraints on Type Ia Supernova Light-curve Hyperparameters and Reconstructions of the Expansion History of the Universe

  • Koo, Hanwool;Shafieloo, Arman;Keeley, Ryan E.;L'Huillier, Benjamin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.48.4-49
    • /
    • 2020
  • We reconstruct the expansion history of the universe using type Ia supernovae (SN Ia) in a manner independent of any cosmological model assumptions. To do so, we implement a nonparametric iterative smoothing method on the Joint Light-curve Analysis (JLA) data while exploring the SN Ia light-curve hyperparameter space by Markov Chain Monte Carlo (MCMC) sampling. We test to see how the posteriors of these hyperparameters depend on cosmology, whether using different dark energy models or reconstructions shift these posteriors. Our constraints on the SN Ia light-curve hyperparameters from our model-independent analysis are very consistent with the constraints from using different parameterizations of the equation of state of dark energy, namely the flat ΛCDM cosmology, the Chevallier-Polarski-Linder model, and the Phenomenologically Emergent Dark Energy (PEDE) model. This implies that the distance moduli constructed from the JLA data are mostly independent of the cosmological models. We also studied that the possibility the light-curve parameters evolve with redshift and our results show consistency with no evolution. The reconstructed expansion history of the universe and dark energy properties also seem to be in good agreement with the expectations of the standard ΛCDM model. However, our results also indicate that the data still allow for considerable flexibility in the expansion history of the universe. This work is published in ApJ.

  • PDF

Numerical Analysis of Optical Damage in Dielectrics Irradiated by Ultra-Short Pulsed Lasers (극초단 펄스 레이저에 의한 절연체의 광학 손상 해석)

  • Lee, Seong-Hyuk;Kang, Kwang-Gu;Lee, Joon-Sik;Choi, Young-Ki;Park, Seung-Ho;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1213-1218
    • /
    • 2004
  • The present article reports extensive numerical results on the non-local characteristics of ultra-short pulsed laser-induced breakdowns of fused silica ($SiO_{2}$) by using the multivariate Fokker-Planck equation. The nonlocal type of multivariate Fokker-Planck equation is modeled on the basis of the Boltzmann transport formalism to describe the ultra-short pulsed laser-induced damage phenomena in the energy-position space, together with avalanche ionization, three-body recombination, and multiphoton ionization. Effects of electron avalanche, recombination, and multiphoton ionization on the electronic transport are examined. From the results, it is observed that the recombination becomes prominent and contributes to reduce substantially the rate of increase in electron number density when the electron density exceeds a certain threshold. With very intense laser irradiation, a strong absorption of laser energy takes place and an initially transparent solid is converted to a metallic state, well known as laser-induced breakdown. It is also found that full ionization is provided at intensities above threshold, all further laser energy is deposited within a thin skin depth.

  • PDF

Reliability Based Design Optimization using Moving Least Squares (이동최소자승법을 이용한 신뢰성 최적설계)

  • Park, Jang-Won;Lee, Oh-Young;Im, Jong-Bin;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.438-447
    • /
    • 2008
  • This study is focused on reliability based design optimization (RBDO) using moving least squares. A response surface is used to derive a limit-state equation for reliability based design optimization. Response surface method (RSM) with least square method (LSM) or Kriging will be used as a response surface. RSM is fast to make the response surface. On the other hand, RSM has disadvantage to make the response surface of nonlinear equation. Kriging can make the response surface in nonlinear equation precisely but needs considerable amount of computations. The moving least square method (MLSM) is made of both methods (RSM with LSM+Kriging). Numerical results by MLSM are compared with those by LMS in Rosenbrock function and six-hump carmel back function. The RBDO of engine duct of smart UAV is pursued in this paper. It is proved that RBDO is useful tool for aerospace structural optimal design problems.

CFD analysis of the Disk Friction Loss on the Centrifugal Compressor Impeller (원심 압축기의 임펠러 원판 마찰 손실에 대한 CFD 해석)

  • Kim, Hyun-Yop;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.596-604
    • /
    • 2011
  • To improve the total efficiency of centrifugal compressor, it is necessary to reduce the disk friction loss, which is defined as the power loss. In this study, the disk friction loss due to the axial clearance and the surface roughness effect is analyzed and proposed the new empirical equation for the reduction of the disk friction loss. The rotating reference frame technique and the 2-equation k-${\omega}$ SST model using commercial CFD code FLUENT is used for the steady-state analysis of the centrifugal compressor impeller. According to CFD results, the disk friction loss of the impeller is more affected by the surface roughness than the change of the axial clearance. For the minimization of the disk friction loss on the centrifugal compressor impeller, the magnitude of the axial clearance should be designed to the same size compare with theoretical boundary layer thickness and the surface roughness should be minimized.