• Title/Summary/Keyword: State Space Model

Search Result 1,025, Processing Time 0.03 seconds

The Contribution of Innovation on Productivity and Growth in Korea (기술혁신이 생산성과 경제성장에 미치는 영향)

  • Kim, Byung-Woo
    • Journal of Korea Technology Innovation Society
    • /
    • v.11 no.1
    • /
    • pp.72-90
    • /
    • 2008
  • What has been the contribution of industrial innovation to economic growth? Typically, the issue has been approached with growth-accounting methods augmented to include a "stock of knowledge". An independent estimate of the rate of return to R&D is found in order to impute patents granted to the accumulation of knowledge. Griliches(1973) then uses a regression approach to assess the effect of an R&D variable on the computed TFP growth rate. The regression coefficient on the R&D variable would provide an estimate of the social rate of return to R&D. The related studies tend to show high social rates of return to R&D, typically in a range of 20 to 40 % per year. We need to provide multiple equation dynamic system for productivity and innovation in Korean economy in state space form. A wide range of time series models, including the classical linear regression model, can be written and estimated as special cases of a state space specification. State space models have been applied in the econometrics literature to model unobserved variables like productivity. Estimation produces the following results. Considering the goodness of fit, we can see that the evidence is strongly in favor of the range $0.120{\sim}0.135$ for the elasticity of TFP to R&D stock in the period between 1970's and the early 2000's.

  • PDF

Design of nonlinear optimal regulators using lower dimensional riemannian geometric models

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.628-633
    • /
    • 1994
  • A new Riemannian geometric model for the controlled plant is proposed by imbedding the control vector space in the state space, so as to reduce the dimension of the model. This geometric model is derived by replacing the orthogonal straight coordinate axes on the state space of a linear system with the curvilinear coordinate axes. Therefore the integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the lower dimensional Riemannian geometric model, a nonlinear optimal regulator with a quadratic form performance index which contains the Riemannian metric tensor is designed. Since the integral manifold of the nonlinear regulator is determined to be homeomorphic to that of the linear regulator, it is expected that the basic properties of the linear regulator such as feedback structure, stability and robustness are to be reflected in those of the nonlinear regulator. To apply the above regulator theory to a real nonlinear plant, it is discussed how to distort the curvilinear coordinate axes on which a nonlinear plant behaves as a linear system. Consequently, a partial differential equation with respect to the homeomorphism is derived. Finally, the computational algorithm for the nonlinear optimal regulator is discussed and a numerical example is shown.

  • PDF

FE Modeling for the Transient Response Analysis of a Flexible Rotor-bearing System with Mount System to Base Shock Excitation (마운트 시스템을 갖는 유연 로터-베어링 시스템의 기초전달 충격 과도응답 해석을 위한 유한요소 모델링)

  • Lee, An-Sung;Kim, Byung-Ok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1208-1216
    • /
    • 2007
  • Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems, including aircrafts, ships, and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of their rotors, considering the dynamics of mount designs to be applied. In this study a generalized FE transient response analysis model, introducing relative displacements, is proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model, obtained by treating a rotor as concentrated lumped mass, equivalent spring and a damper or Jeffcott rotor model. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

Attitude Dynamics Identification of Unmanned Aircraft Vehicle

  • Salman Shaaban Ali;Sreenatha Anavatti G.;Choi, Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.782-787
    • /
    • 2006
  • The role of Unmanned Aircraft Vehicles(UAVs) has been increasing significantly in both military and civilian operations. Many complex systems, such as UAVs, are difficult to model accurately because they exhibit nonlinearity and show variations with time. Therefore, the control system must address the issues of uncertainty, nonlinearity, and complexity. Hence, identification of the mathematical model is an important process in controller design. In this paper, attitude dynamics identification of UAV is investigated. Using the flight data, nonlinear state space model for attitude dynamics of UAV is derived and verified. Real time simulation results show that the model dynamics match experimental data.

An Approximate Analysis of a Stochastic Fluid Flow Model Applied to an ATM Multiplexer (ATM 다중화 장치에 적용된 추계적 유체흐름 모형의 근사분석)

  • 윤영하;홍정식;홍정완;이창훈
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.4
    • /
    • pp.97-109
    • /
    • 1998
  • In this paper, we propose a new approach to solve stochastic fluid flow models applied to the analysis of ceil loss of an ATM multiplexer. Existing stochastic fluid flow models have been analyzed by using linear differential equations. In case of large state space, however. analyzing stochastic fluid flow model without numerical errors is not easy. To avoid this numerical errors and to analyze stochastic fluid flow model with large state space. we develope a new computational algorithm. Instead of solving differential equations directly, this approach uses iterative and numerical method without calculating eigenvalues. eigenvectors and boundary coefficients. As a result, approximate solutions and upper and lower bounds are obtained. This approach can be applied to stochastic fluid flow model having general Markov chain structure as well as to the superposition of heterogeneous ON-OFF sources it can be extended to Markov process having non-exponential sojourn times.

  • PDF

Constitutive modeling for rock joints of tunnel (터널 암반절리에 대한 구성방정식 모델링)

  • Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.101-111
    • /
    • 2002
  • The purpose of this research is to develop improved model for joints of tunnel based on Disturbed State Concept (DSC) model. DSC model is verified with respect to comprehensive laboratory tests performed by Schneider and back prediction results. Based on results of this research, it can be stated that DSC model is capable of characterizing the strain softening and dilative behavior of rough granite joints under four different constant normal stresses.

  • PDF

Damage estimation for structural safety evaluation using dynamic displace measurement (구조안전도 평가를 위한 동적변위 기반 손상도 추정 기법 개발)

  • Shin, Yoon-Soo;Kim, Junhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.87-94
    • /
    • 2019
  • Recently, the advance of accurate dynamic displacement measurement devices, such as GPS, computer vision, and optic laser sensor, has enhanced the structural monitoring technology. In this study, the dynamic displacement data was used to verify the applicability of the structural physical parameter estimation method through subspace system identification. The subspace system identification theory for estimating state-space model from measured data and physics-based interpretation for deriving the physical parameter of the estimated system are presented. Three-degree-freedom steel structures were fabricated for the experimental verification of the theory in this study. Laser displacement sensor and accelerometer were used to measure the displacement data of each floor and the acceleration data of the shaking table. Discrete state-space model generated from measured data was verified for precision. The discrete state-space model generated from the measured data extracted the floor stiffness of the building after accuracy verification. In addition, based on the story stiffness extracted from the state space model, five column stiffening and damage samples were set up to extract the change rate of story stiffness for each sample. As a result, in case of reinforcement and damage under the same condition, the stiffness change showed a high matching rate.

Declutching control of a point absorber with direct linear electric PTO systems

  • Zhang, Xian-Tao;Yang, Jian-Min;Xiao, Long-Fei
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.63-82
    • /
    • 2014
  • Declutching control is applied to a hemispherical wave energy converter with direct linear electric Power-Take-Off systems oscillating in heave direction in both regular and irregular waves. The direct linear Power-Take-Off system can be simplified as a mechanical spring and damper system. Time domain model is applied to dynamics of the hemispherical wave energy converter in both regular and irregular waves. And state space model is used to replace the convolution term in time domain equation of the heave oscillation of the converter due to its inconvenience in analyzing the controlled motion of the converters. The declutching control strategy is conducted by optimal command theory based on Pontryagin's maximum principle to gain the controlled optimum sequence of Power-Take-Off forces. The results show that the wave energy converter with declutching control captures more energy than that without control and the former's amplitude and velocity is relatively larger. However, the amplification ratio of the absorbed power by declutching control is only slightly larger than 1. This may indicate that declutching control method may be inapplicable for oscillating wave energy converters with direct linear Power-Take-Off systems in real random sea state, considering the error of prediction of the wave excitation force.

Investigation of Thermophysical Properties of the Kerosene Using the Surrogate Model Fuel at Supercritical Conditions (초임계 영역에서 대체 모델 연료를 이용한 케로신의 열역학적 상태량 연구)

  • Kim, Kuk-Jin;Heo, Jun-Young;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.823-833
    • /
    • 2010
  • For the study of thermophysical properties of kerosene for the liquid rocket and aviation fuels, the surrogate models are investigated. The density distributions based on the real gas equations of state(Soave modification of Redlich-Kwong and Peng-Robinson equation of state) and NIST SUPERTRAPP(extended corresponding state principle) are compared with the previous experimental results at supercritical conditions. The error range of thermophysical properties analyzed for the surrogate models as well. Peng-Robinson equation of state and extended corresponding state principle are especially accurate for the hydrocarbon fuels but the appropriate surrogate models need to be chosen to the operation conditions such as pressure and temperature.

Abstraction of Models with State Projections In Model Checking (모델 체킹에서 상태 투영을 이용한 모델의 추상화)

  • Kwon, Gi-Hwon
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1295-1300
    • /
    • 2004
  • Although model checking has gained its popularity as one of the most effective approaches to the formal verification, it has to deal with the state explosion problem to be widely used in industry. In order to mitigate the problem, this paper proposes an ion technique to obtain a reduced model M' from a given original model M. Our technique Identifies the set of necessary variables for model checking and projects the state space onto them. The model M' is smaller in both size and behavior than the original model M, written M'$\leq$M. Since the result of reachability analysis with M' is preserved in M, we can do reachability analysis with model checking using M' instead of M. The abstraction technique is applied to Push Push games, and two model checkers - Cadence SMV and NuSMV - are used to solve the games. As a result, most of unsolved games with the usual model checking are solved with the ion technique. In addition, ion shows that there is much of time and space improvement. With Cadence SMV, there is 87% time improvement and 79% space one. And there is 83% time improvement and 56% space one with NuSMV.