• 제목/요약/키워드: State Failure

검색결과 1,543건 처리시간 0.031초

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

A Particle Filtering Approach for On-Line Failure Prognosis in a Planetary Carrier Plate

  • Orchard, Marcos E.;Vachtsevanos, George J.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.221-227
    • /
    • 2007
  • This paper introduces an on-line particle-filtering-based framework for failure prognosis in nonlinear, non-Gaussian systems. This framework uses a nonlinear state-space model of the plant(with unknown time-varying parameters) and a particle filtering(PF) algorithm to estimate the probability density function(pdf) of the state in real-time. The state pdf estimate is then used to predict the evolution in time of the fault indicator, obtaining as a result the pdf of the remaining useful life(RUL) for the faulty subsystem. This approach provides information about the precision and accuracy of long-term predictions, RUL expectations, and 95% confidence intervals for the condition under study. Data from a seeded fault test for a UH-60 planetary carrier plate are used to validate the proposed methodology.

CONFIDENCE LIMITS FOR STEADY STATE AVAILABILITY OF A REDUNDANT SYSTEM

  • Shin, Sang-Wook;Lim, Jae-Hak;Park, Dong-Ho
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2000년도 춘계학술대회 발표논문집
    • /
    • pp.193-200
    • /
    • 2000
  • In this paper, we consider confidence limits for steady state availability of a redundant structure with the function of switchover processing. The system considered in this paper consists of three units which are an active unit, a standby unit and a switchover device. A control module does not affect the performance of the system while the active unit is operating but causes the system failure if the active unit fails at the failure of the control module. The effect of failure of control module is included in our reliability model of the simple redundant structure. The availability of the system is obtained by using the state space method. An example is given to illustrate our results.

  • PDF

Analysis of the failure mechanism and support technology for the Dongtan deep coal roadway

  • Chen, Miao;Yang, Sheng-Qi;Zhang, Yuan-Chao;Zang, Chuan-Wei
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.401-420
    • /
    • 2016
  • The stability of deep coal roadways with large sections and thick top coal is a typical challenge in many coal mines in China. The innovative Universal Discrete Element Code (UDEC) trigon block is adopted to create a numerical model based on a case study at the Dongtan coal mine in China to better understand the failure mechanism and stability control mechanism of this kind of roadway. The failure process of an unsupported roadway is simulated, and the results suggest that the deformation of the roof is more serious than that of the sides and floor, especially in the center of the roof. The radial stress that is released is more intense than the tangential stress, while a large zone of relaxation appears around the roadway. The failure process begins from partial failure at roadway corners, and then propagates deeper into the roof and sides, finally resulting in large deformation in the roadway. A combined support system is proposed to support roadways based on an analysis of the simulation results. The numerical simulation and field monitoring suggest that the availability of this support method is feasible both in theory and practice, which can provide helpful references for research on the failure mechanisms and scientific support designing of engineering in deep coal mines.

파손압력모델의 경계조건을 이용한 매설배관의 파손확률 평가 (Estimation of Failure Probability Using Boundary Conditions of Failure Pressure Model for Buried Pipelines)

  • 이억섭;김의상;김동혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.310-315
    • /
    • 2003
  • This paper presents the effect of boundary condition of failure pressure model for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with various corrosion defects for long exposure periods in years. A failure pressure model based on a failure function composed of failure pressure and operation pressure is adopted for the assessment of pipeline failure. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the corrosion pipeline.

  • PDF

Effect of Boundary Conditions of Failure Pressure Models on Reliability Estimation of Buried Pipelines

  • Lee, Ouk-Sub;Pyun, Jang-Sik;Kim, Dong-Hyeok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권6호
    • /
    • pp.12-19
    • /
    • 2003
  • This paper presents the effect of boundary conditions in various failure pressure models published for the estimation of failure pressure. Furthermore, this approach is extended to the failure prediction with the aid of a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with each corrosion defect in buried pipelines for long exposure period with unit of years. A failure probability model based on the von-Mises failure criterion is adapted. The log-normal and standard normal probability functions for varying random variables are adapted. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically investigated for the corrosion pipeline by using an adapted failure probability model and varying failure pressure model.

펌프-밸브 시스템의 DES 접근론적 Failure Diagnosis (DES Approach Failure Diagnosis of Pump-valve System)

  • 손형일;김기웅;이석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.643-646
    • /
    • 2000
  • As many industrial systems become more complex, it becomes extremely difficult to diagnose the cause of failures. This paper presents a failure diagnosis approach based on discrete event system theory. In particular, the approach is a hybrid of event-based and state-based ones leading to a simpler failure diagnoser with supervisory control capability. The design procedure is presented along with a pump-valve system as an example.

  • PDF

A Failure Estimation Method of Steel Pipe Elbows under In-plane Cyclic Loading

  • Jeon, Bub-Gyu;Kim, Sung-Wan;Choi, Hyoung-Suk;Park, Dong-Uk;Kim, Nam-Sik
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.245-253
    • /
    • 2017
  • The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation.

miR-23a Regulates Cardiomyocyte Apoptosis by Targeting Manganese Superoxide Dismutase

  • Long, Bo;Gan, Tian-Yi;Zhang, Rong-Cheng;Zhang, Yu-Hui
    • Molecules and Cells
    • /
    • 제40권8호
    • /
    • pp.542-549
    • /
    • 2017
  • Cardiomyocyte apoptosis is initiated by various cellular insults and accumulated cardiomyocyte apoptosis leads to the pathogenesis of heart failure. Excessive reactive oxygen species (ROS) provoke apoptotic cascades. Manganese superoxide dismutase (MnSOD) is an important antioxidant enzyme that converts cellular ROS into harmless products. In this study, we demonstrate that MnSOD is down-regulated upon hydrogen peroxide treatment or ischemia/reperfusion (I/R) injury. Enhanced expression of MnSOD attenuates cardiomyocyte apoptosis and myocardial infarction induced by I/R injury. Further, we show that miR-23a directly regulates the expression of MnSOD. miR-23a regulates cardiomyocyte apoptosis by suppressing the expression of MnSOD. Our study reveals a novel model regulating cardiomyocyte apoptosis which is composed of miR-23a and MnSOD. Our study provides a new method to tackling apoptosis related cardiac diseases.

Two Factors Failure Model of Oil-Paper Insulation Aging under Electrical and Thermal Multistress

  • Li, Jian;Wang, Yan;Bao, Lianwei
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.957-963
    • /
    • 2014
  • Converter transformers play important roles in high-voltage direct current transmission systems. This paper presents experimental and analysis results of the combined electrical and thermal aging of oil-impregnated paper at pulsating DC voltages. Breakdown voltages and time-to-breakdown of oil-paper specimens were measured by using short-time and constant-stress tests. The breakdown characteristics of combined electrical and thermal aging on insulation system were discussed. According to the relationship between failure time and aging temperature, the two-parameter Weibull model was improved. On the basis of the competing risk algorithm and the improved Weibull model, the two factors failure model was calculated. And the influence of temperature in the insulation system has been analyzed. This model performs better than the two-parameter Weibull model when both time and temperature are considered as variables in estimating the lifetime of oil-paper insulation.