Browse > Article
http://dx.doi.org/10.14348/molcells.2017.0012

miR-23a Regulates Cardiomyocyte Apoptosis by Targeting Manganese Superoxide Dismutase  

Long, Bo (Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College)
Gan, Tian-Yi (State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College)
Zhang, Rong-Cheng (State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College)
Zhang, Yu-Hui (State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College)
Abstract
Cardiomyocyte apoptosis is initiated by various cellular insults and accumulated cardiomyocyte apoptosis leads to the pathogenesis of heart failure. Excessive reactive oxygen species (ROS) provoke apoptotic cascades. Manganese superoxide dismutase (MnSOD) is an important antioxidant enzyme that converts cellular ROS into harmless products. In this study, we demonstrate that MnSOD is down-regulated upon hydrogen peroxide treatment or ischemia/reperfusion (I/R) injury. Enhanced expression of MnSOD attenuates cardiomyocyte apoptosis and myocardial infarction induced by I/R injury. Further, we show that miR-23a directly regulates the expression of MnSOD. miR-23a regulates cardiomyocyte apoptosis by suppressing the expression of MnSOD. Our study reveals a novel model regulating cardiomyocyte apoptosis which is composed of miR-23a and MnSOD. Our study provides a new method to tackling apoptosis related cardiac diseases.
Keywords
apoptosis; hydrogen peroxide; ischemia/reperfusion; miR-23a; MnSOD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lin, Z., Murtaza, I., Wang, K., Jiao, J., Gao, J., and Li, P.F. (2009). miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 106, 12103-12108.   DOI
2 Liochev, S.I. (2013). Reactive oxygen species and the free radical theory of aging. Free Rad. Biol. Med. 60, 1-4.   DOI
3 Long, B., Wang, K., Li, N., Murtaza, I., Xiao, J.Y., Fan, Y.Y., Liu, C.Y., Li, W.H., Cheng, Z., and Li, P. (2013). miR-761 regulates the mitochondrial network by targeting mitochondrial fission factor. Free Rad. Biol. Med. 65, 371-379.   DOI
4 Moe, G.W., and Marin-Garcia, J. (2016). Role of cell death in the progression of heart failure. Heart Fail. Rev. 21, 157-167.   DOI
5 Murphy, M.P. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417, 1-13.   DOI
6 Murphy, M.P., Holmgren, A., Larsson, N.G., Halliwell, B., Chang, C.J., Kalyanaraman, B., Rhee, S.G., Thornalley, P.J., Partridge, L., Gems, D., et al. (2011). Unraveling the biological roles of reactive oxygen species. Cell Metabol. 3, 361-366.
7 Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J.A., Quaini, E., Di Loreto, C., Beltrami, C.A., Krajewski, S., et al. (1997). Apoptosis in the failing human heart. N Engl. J. Med. 336, 1131-1141.   DOI
8 Sena, L.A., and Chandel, N.S. (2012). Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158-167.   DOI
9 Skommer, J., Rana, I., Marques, F.Z., Zhu, W., Du, Z., and Charchar, F.J. (2014). Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death Dis. 5, e1325.   DOI
10 Subramanian, S., and Steer, C.J. (2010). MicroRNAs as gatekeepers of apoptosis. J. Cell. Physiol. 223, 289-298.
11 Candas, D., and Li, J.J. (2014). MnSOD in oxidative stress responsepotential regulation via mitochondrial protein influx. Antioxid. Redox Signal. 20, 1599-1617.   DOI
12 Barringhaus, K.G., and Zamore, P.D. (2009). MicroRNAs: regulating a change of heart. Circulation 119, 2217-2224.   DOI
13 Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.   DOI
14 Barwari, T., Joshi, A., and Mayr, M. (2016). MicroRNAs in cardiovascular disease. J. Am. Coll.Cardiol. 68, 2577-2584.   DOI
15 Chen, Y.R., and Zweier, J.L. (2014). Cardiac mitochondria and reactive oxygen species generation. Circ. Res. 114, 524-537.   DOI
16 Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179.   DOI
17 Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., et al. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486-491.   DOI
18 Takami, Y., Uto, H., Tamai, T., Sato, Y., Ishida, Y., Morinaga, H., Sakakibara, Y., Moriuchi, A., Oketani, M., Ido, A., et al. (2010). Identification of a novel biomarker for oxidative stress induced by hydrogen peroxide in primary human hepatocytes using the 2-nitrobenzenesulfenyl chloride isotope labeling method. Hepatol. Res. 40, 438-445.   DOI
19 Wang, K., Long, B., Liu, F., Wang, J.X., Liu, C.Y., Zhao, B., Zhou, L.Y., Sun, T., Wang, M., Yu, T., et al. (2016). A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur. Heart J. 37, 2602-2611.   DOI
20 Yang, J., Marden, J.J., Fan, C., Sanlioglu, S., Weiss, R.M., Ritchie, T.C., Davisson, R.L., and Engelhardt, J.F. (2003). Genetic redox preconditioning differentially modulates AP-1 and NF kappa B responses following cardiac ischemia/reperfusion injury and protects against necrosis and apoptosis. Mol. Therapy 7, 341-353.   DOI
21 Zhao, H., Tao, Z., Wang, R., Liu, P., Yan, F., Li, J., Zhang, C., Ji, X., and Luo, Y. (2014). MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res. 1592, 65-72.   DOI
22 Duygu, B., de Windt, L.J., and da Costa Martins, P.A. (2016). Targeting microRNAs in heart failure. Trends Cardiovasc. Med. 26, 99-110.   DOI
23 Cramer-Morales, K., Heer, C.D., Mapuskar, K.A., and Domann, F.E. (2015). SOD2 targeted gene editing by CRISPR/Cas9 yields Human cells devoid of MnSOD. Free Radic. Biol. Med. 89, 379-386.   DOI
24 Dixon, S.J., and Stockwell, B.R. (2014). The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9-17.   DOI
25 Dumortier, O., Hinault, C., and Van Obberghen, E. (2013). MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metabol. 18, 312-324.   DOI
26 Filipowicz, W., Bhattacharyya, S.N., and Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102-114.   DOI
27 Fukai, T., and Ushio-Fukai, M. (2011). Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 15, 1583-1606.   DOI
28 Hata, A. (2013). Functions of microRNAs in cardiovascular biology and disease. Ann. Rev. Physiol. 75, 69-93.   DOI
29 Choi, W.Y., Giraldez, A.J., and Schier, A.F. (2007). Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318, 271-274.   DOI
30 Kalogeris, T., Bao, Y., and Korthuis, R.J. (2014). Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox. Biol. 2, 702-714.   DOI
31 Khan, R.S., Fonseca-Kelly, Z., Callinan, C., Zuo, L., Sachdeva, M.M., and Shindler, K.S. (2012). SIRT1 activating compounds reduce oxidative stress and prevent cell death in neuronal cells. Front. Cell. Neurosci. 6, 63.
32 Lambeth, J.D., and Neish, A.S. (2014). Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Ann. Rev. Pathol. 9, 119-145.   DOI
33 Kimoto, K., Suzuki, K., Kizaki, T., Hitomi, Y., Ishida, H., Katsuta, H., Itoh, E., Ookawara, T., Honke, K., and Ohno, H. (2003). Gliclazide protects pancreatic beta-cells from damage by hydrogen peroxide. Biochem. Biophy. Res. Commun. 303, 112-119.   DOI
34 Kinscherf, R., Claus, R., Wagner, M., Gehrke, C., Kamencic, H., Hou, D., Nauen, O., Schmiedt, W., Kovacs, G., Pill, J., et al. (1998). Apoptosis caused by oxidized LDL is manganese superoxide dismutase and p53 dependent. FASEB J. 12, 461-467.   DOI
35 Kopf, P.G., Scott, J.A., Agbor, L.N., Boberg, J.R., Elased, K.M., Huwe, J.K., and Walker, M.K. (2010). Cytochrome P4501A1 is required for vascular dysfunction and hypertension induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Sci. 117, 537-546.   DOI
36 Landmesser, U., Dikalov, S., Price, S.R., McCann, L., Fukai, T., Holland, S.M., Mitch, W.E., and Harrison, D.G. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest. 111, 1201-1209.   DOI
37 Latronico, M.V., and Condorelli, G. (2009). MicroRNAs and cardiac pathology. Nat. Rev. Cardiol. 6, 419-429.
38 Li, Y., Huang, T.T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, J.L., Noble, L.J., Yoshimura, M.P., Berger, C., Chan, P.H., et al. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11, 376-381.   DOI
39 Li, J., Aung, L.H., Long, B., Qin, D., An, S., and Li, P. (2015). miR-23a binds to p53 and enhances its association with miR-128 promoter. Sci. Rep. 5, 16422.   DOI