• Title/Summary/Keyword: State Estimation System

Search Result 880, Processing Time 0.027 seconds

Numerical study on thermal-hydraulics of external reactor vessel cooling in high-power reactor using MARS-KS1.5 code: CFD-aided estimation of natural circulation flow rate

  • Song, Min Seop;Park, Il Woong;Kim, Eung Soo;Lee, Yeon-Gun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.72-83
    • /
    • 2022
  • This paper presents a numerical investigation of two-phase natural circulation flows established when external reactor vessel cooling is applied to a severe accident of the APR1400 reactor for the in-vessel retention of the core melt. The coolability limit due to external reactor vessel cooling is associated with the natural circulation flow rate around the lower head of the reactor vessel. For an elaborate prediction of the natural circulation flow rate using a thermal-hydraulic system code, MARS-KS1.5, a three-dimensional computational fluid dynamics (CFD) simulation is conducted to estimate the flow rate and pressure distribution of a liquid-state coolant at the brink of significant void generation. The CFD calculation results are used to determine the loss coefficient at major flow junctions, where substantial pressure losses are expected, in the nodalization scheme of the MARS-KS code such that the single-phase flow rate is the same as that predicted via CFD simulations. Subsequently, the MARS-KS analysis is performed for the two-phase natural circulation regime, and the transient behavior of the main thermal-hydraulic variables is investigated.

SUSTAINABILITY SOLUTIONS USING TRENCHLESS TECHNOLOGIES IN URBAN UNDERGROUND INFRASTRUCTURE DEVELOPMENT

  • Dae-Hyun (Dan) Koo;Samuel Ariaratnam
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.367-374
    • /
    • 2013
  • Underground infrastructure systems provide essential public services and goods through buried structures including water and sewer, gas and petroleum, power and communication pipelines. The majority of existing underground infrastructure systems was installed in green field areas prior to development of complex urban built environments. Currently, there is a global trend to escalate major demand for underground infrastructure system renewal and new installation while minimizing disruption and maintaining functions of existing superstructures. Therefore, Engineers and utility owners are rigorously seeking technologies that minimize environmental, social, and economic impact during the renewal and installation process. Trenchless technologies have proven to be socially less disruptive, more environmentally friendly, energy conservative and economically viable alternative methods. All of those benefits are adequate to enhance overall sustainability. This paper describes effective sustainable solutions using trenchless technologies. Sustainability is assessed by a comparison between conventional open cut and trenchless technology methods. Sustainability analysis is based on a broad perspective combining the three main aspects of sustainability: economic; environmental; and social. Economic includes construction cost, benefit, and social cost analysis. Environmental includes emission estimation and environmental quality impact study. Social includes various social impacts on an urban area. This paper summarizes sustainable trenchless technology solutions and presents a sustainable construction method selection process in a proposed framework to be used in urban underground infrastructure capital improvement projects.

  • PDF

A Study on the Estimation of Discharge in Unsteady Condition by Using the Entropy Concept (엔트로피 개념에 의한 부정류 유량 산정에 관한 연구)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6159-6166
    • /
    • 2012
  • A discharge measurement is difficult in flood season which is especially important in the water resources field and the continuous discharge measurement for all rivers is impossible on the present system. So, the stage-discharge curve has been used for a long time to produce discharge data of rivers. However, there has been problems from a reliability angle due to the fact that this method uses only stage-discharge relationship, although the stage-discharge curve has the convenience. Therefore, a new mean velocity equation was derived by using Chiu's 2D velocity formula of the entropy concept in this paper. The derived equation reflected hydraulic characteristics such as the depth, gravity acceleration, hydraulic radius, energy slope, kinematic coefficient of viscosity, etc. and estimated also a maximum velocity. In addition, this method verified the relationship between a mean and maximum velocity and estimates an equilibrium state ${\phi}(M)$ well presenting properties of a river cross section as the results. The mean velocity was estimated by using the equilibrium state ${\phi}(M)$, and then the discharge was estimated. To prove this equation to be accurate, the comparison between the measured and estimated discharge is conducted by using the measured laboratory data in the unsteady condition flow showing loop state and the results are consistent. If this study is constantly carried out by using various laboratory and river data, this method will be widely utilized in water resources field.

An Adaptive Complementary Sliding-mode Control Strategy of Single-phase Voltage Source Inverters

  • Hou, Bo;Liu, Junwei;Dong, Fengbin;Mu, Anle
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.168-180
    • /
    • 2018
  • In order to achieve the high quality output voltage of single-phase voltage source inverters, in this paper an Adaptive Complementary Sliding Mode Control (ACSMC) is proposed. Firstly, the dynamics model of the single-phase inverter with lumped uncertainty including parameter variations and external disturbances is derived. Then, the conventional Sliding Mode Control (SMC) and Complementary Sliding Mode Control (CSMC) are introduced separately. However, when system parameters vary or external disturbance occurs, the controlling performance such as tracking error, response speed et al. always could not satisfy the requirements based on the SMC and CSMC methods. Consequently, an ACSMC is developed. The ACSMC is composed of a CSMC term, a compensating control term and a filter parameters estimator. The compensating control term is applied to compensate for the system uncertainties, the filter parameters estimator is used for on-line LC parameter estimation by the proposed adaptive law. The adaptive law is derived using the Lyapunov theorem to guarantee the closed-loop stability. In order to decrease the control system cost, an inductor current estimator is developed. Finally, the effectiveness of the proposed controller is validated through Matlab/Simulink and experiments on a prototype single-phase inverter test bed with a TMS320LF28335 DSP. The simulation and experimental results show that compared to the conventional SMC and CSMC, the proposed ACSMC control strategy achieves more excellent performance such as fast transient response, small steady-state error, and low total harmonic distortion no matter under load step change, nonlinear load with inductor parameter variation or external disturbance.

Structural system identification by measurement error-minimization observability method using multiple static loading cases

  • Lei, Jun;Lozano-Galant, Jose Antonio;Xu, Dong;Zhang, Feng-Liang;Turmo, Jose
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.339-351
    • /
    • 2022
  • Evaluating the current condition of existing structures is of primary importance for economic and safety reasons. This can be addressed by Structural System Identification (SSI). A reliable static SSI depends on well-designed sensor configuration and loading cases, as well as efficient parameter estimation algorithms. Static SSI by the Measurement Error-Minimizing Observability Method (MEMOM) is a model-based deterministic static SSI method that could estimate structural parameters from static responses. In the current state of the art, this method is only applicable when structures are subjected to one loading case. This might lead to lack of information in some local regions of the structure (such as the null curvatures zones). To address this issue, the SSI by MEMOM using multiple loading cases is proposed in this work. Observability equations obtained from different loading cases are concatenated simultaneously and an optimization procedure is introduced to obtain the estimations by minimizing the discrepancy between the predicted response and the measured one. In addition, a Genetic-Algorithm (GA)-based Optimal Sensor Placement (OSP) method is proposed to tackle the OSP problem under multiple static loading cases for the very first time. In this approach, the Fisher Information Matrix (FIM)'s determinant is used as the metric of the goodness of sensor configurations. The numerical examples of a 3-span continuous bridge and a 13-story frame, are analyzed to validate the applicability of the extended SSI by MEMOM and the GA-based OSP method.

Algorithm and Performance Evaluation of High-speed Distinction for Condition Recognition of Defective Nut (불량 너트의 상태인식을 위한 고속 판별 알고리즘 및 성능평가)

  • Park, Tae-Jin;Lee, Un-Seon;Lee, Sang-Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.895-904
    • /
    • 2011
  • In welding machine that executes existing spot welding, wrong operation of system has often occurs because of their mechanical motion that can be caused by a number of supply like the welding object. In exposed working environment for various situations such as worker or related equipment moving into any place that we are unable to exactly distinguish between good and not condition of nut. Also, in case of defective welding of nut, it needs various evaluation and analysis through image processing because the problem that worker should be inspected every single manually. Therefore in this paper, if the object was not stabilization state correctly, we have purpose to algorithm implementation that it is to reduce the analysis time and exact recognition as to improve system of image processing. As this like, as image analysis for assessment whether it is good or not condition of nut, in his paper, implemented algorithms were suggested and list by group and that it showed the effectiveness through more than one experiment. As the result, recognition rate of normality and error according to the estimation time have been shown as 40%~94.6% and 60%~5.4% from classification 1 of group 1 to classification 11 of group 5, and that estimation time of minimum, maximum, and average have been shown as 1.7sec.~0.08sec., 3.6sec.~1.2sec., and 2.5sec.~0.1sec.

Estimation of VMS Traffic Information Value Using Contingent Valuation Method (조건부 가치측정법을 활용한 VMS 교통정보 가치 추정)

  • Choi, Jung Yoon;Yu, Jeong Whon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.42-52
    • /
    • 2013
  • In this study, value of VMS (Variable Message Sign) traffic information is estimated by using CVM (Contingent Valuation Method), which is developed to quantify the value of non-marketable goods in environmental economics. CVM is used to estimate the value of goods provided by a project under consideration and then the project feasibility can be indirectly examined on the basis of the estimated value. This study focuses on estimating to estimate value of traffic information provided through VMS, a part of the transportation system enhancement project by Korea Expressway Corporation which is aimed at mitigating traffic problems on expressways. In particular, this study analyzes value of information separately by trip purpose, information type, and traffic flow condition. A state preference survey was designed to estimate the value of non-marketable traffic information. To maximize reliability of the survey results, a pilot survey was taken before the main survey. The open-ended question method was adopted in capturing users' willingness-to-pay. Both Tobit and binary Probit models were applied in estimating the value of VMS traffic information and their parameters were estimated using the maximum likelihood estimation. The estimation results suggests that the value of traffic information perceived by users is 518.28 KRW.

A SOC Coefficient Factor Calibration Method to improve accuracy Of The Lithium Battery Equivalence Model (리튬 배터리 등가모델의 정확도 개선을 위한 SOC 계수 보정법)

  • Lee, Dae-Gun;Jung, Won-Jae;Jang, Jong-Eun;Park, Jun-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.99-107
    • /
    • 2017
  • This paper proposes a battery model coefficient correction method for improving the accuracy of existing lithium battery equivalent models. BMS(battery management system) has been researched and developed to minimize shortening of battery life by keeping SOC(state of charge) and state of charge of lithium battery used in various industrial fields such as EV. However, the cell balancing operation based on the battery cell voltage can not follow the SOC change due to the internal resistance and the capacitor. Various battery equivalent models have been studied for estimation of battery SOC according to the internal resistance of the battery and capacitors. However, it is difficult to apply the same to all the batteries, and it tis difficult to estimate the battery state in the transient state. The existing battery electrical equivalent model study simulates charging and discharging dynamic characteristics of one kind of battery with error rate of 5~10% and it is not suitable to apply to actual battery having different electric characteristics. Therefore, this paper proposes a battery model coefficient correction algorithm that is suitable for real battery operating environments with different models and capacities, and can simulate dynamic characteristics with an error rate of less than 5%. To verify proposed battery model coefficient calibration method, a lithium battery of 3.7V rated voltage, 280 mAh, 1600 mAh capacity used, and a two stage RC tank model was used as an electrical equivalent model of a lithium battery. The battery charge/discharge test and model verification were performed using four C-rate of 0.25C, 0.5C, 0.75C, and 1C. The proposed battery model coefficient correction algorithm was applied to two battery models, The error rate of the discharge characteristics and the transient state characteristics is 2.13% at the maximum.

Adaptive Bit-Interleaved Coded OFDM over Time-Varying Channels (시변 채널에서 Bit-Interleaved Coded OFDM을 위한 적응 변조 기법)

  • Choi, Jin-Soo;Sung, Chang-Kyung;Moon, Sung-Hyun;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.32-39
    • /
    • 2009
  • When adapting the transmitter to the channel state information(CSI), improved transmission is possible compared to the open loop system where no CSI is provided at the transmitter. However, since the perfect channel information is rarely available at the transmitter, the system design based on the partial CSI becomes an important factor. Especially, in mobile environments, the consideration for the outdated CSI should be applied for mitigating the performance degradation. In this paper, we propose a robust adaptive modulation and coding scheme for bit-interleaved coded orthogonal frequency division multiplexing over time-varying channels. With reasonable feedback overhead, the proposed scheme shows the enhanced performance by compensating for the outdated CSI due to Doppler spread. Simulation results confirm that the performance gain is achieved by applying an accurate BER estimation method.

Utilizing Geographic Information System for Analyzing Land Use Suitability in a Urban Area - A Case Study of Kumi City - (도시지역의 토지이용 적지분석을 위한 지리정보시스템의 이용 - 구미시를 중심으로 -)

  • Lee, Jin-Duk;Lee, Hyun-Hwa;Kim, Sung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.29-38
    • /
    • 2001
  • This study addresses the topic of suitability analysis for helping with land use planning, which is one of important decision-making in urban planning, utilizing geographic information system. Covering the Kumi City before integrating with neighbor county, the site suitabilities for land uses, which are categorized into residential, commercial, industrial and green, were analyzed using the overlay method based upon the database constructed for this study. In the process, assessment criteria which include environmental factors and relative weights were determined and also the land use/cover map and NDVI map which were generated through satellite image processing were included in the database. The suitability maps by four function spaces were derived according to the grade and compared with the present land use state and the land use concept map of urban master plan. For more accurate analysis, practical developing plan, land price data, soil data should be included. Also if the demand estimation data by each land use had been added, the reliability of location allocation could have been raised.

  • PDF