• Title/Summary/Keyword: Starting Angle

Search Result 185, Processing Time 0.025 seconds

Viewing the Social Thought of Chinese People in Ming Dynasty Via Piaohailu (由《漂海録》看明代中国人的社会思想)

  • Choi, Chang-Won
    • Industry Promotion Research
    • /
    • v.1 no.1
    • /
    • pp.151-157
    • /
    • 2016
  • Nowadays Chinese society advocates a kind of principal thinking, which Chinese call it "harmony". The entire Chinese society is trying to build a so-called "harmonious society", that is, people live in harmony with the natural environment and carry out sustainable development; people live in harmony with others and build harmonious social relationships; people live in harmony with themselves and cultivate self-morality and enhance national self-quality. It can be seen that the word "harmony" runs through this thinking all the time. This paper aims at viewing Chinese people's philosophy in Ming Dynasty from the Piaohailu. Likewise, the starting points of the paper are also these three aspects which are people's relationships with nature, others and themselves. Based on this angle, it tries to conduct a simple analysis and study by taking Korean official Cui Pu's Piaohailu as the main historical data.

A Basic Study on Position Fixing by Free Gyros (자유자이로를 이용한 위치결정에 관한 기초 연구)

  • Park, Sok-Chu;Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.653-657
    • /
    • 2004
  • The authors aim to design further an upgraded and self-contained position fixing system to meet the future commercial requirements. As a first step this paper is to investigate the theoretical structure of position fixing based on the nature of free gyro, in which the tilt angles of the two spin axes at an arbitrary position are measured respectively and the elapsed time with respect to a reference position or starting point is observed And it illustrates some limitations to be expected in this system.

Effect of Geometric Variation on Starting Characteristic Analysis of H-Darrieus Blades (H-다리우스 블레이드의 형상 변화에 따른 기동특성 해석)

  • Jeong, Jin-Hwan;Kang, Ki-Won;Kim, Berm-Soo;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.45-49
    • /
    • 2011
  • This paper describes the numerical analysis of effect of geometric variation on the straight-bladed vertical axis wind turbine. Geometry variation is performed with pockets on the blades. The results presented in this numerical analysis show the general flow pattern of near the bladed, and azimuth angle variation on stating torque value. It is shown that the pockets makes torque higher about 80%.

Development of PSCAD Simulation Model for Doubly-fed Induction-type Wind Power Generation System (이중여자 유도형 풍력 발전기의 PSCAD 시뮬레이션 모델 개발)

  • Jeong, Byoung-Chang;Kim, Hee-Jung;Chung, Yong-Ho;Jeon, Young-Soo;Kwak, No-Hong;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.261-264
    • /
    • 2006
  • In this paper, doubly-fed induction-type wind power generation system simulation model for grid connection is developed. The simulation model is based on PSCAD/EMTDC and consists of rotor-blade, blade controller, generator power converter and generator controller Blade controller controls the blade pitch angle for starting, peak power limiting and emergency condition. Generator controller controls the generator output power to maximize the system efficiency. Simulation results are shown for the variable wind speed conditions. The simulation model can be utilized for study of actual interaction between wind turbine and grid for reliable operation and protection of power system.

  • PDF

A TUTORIAL ON LINEAR QUADRATIC OPTIMAL GUIDANCE FOR MISSILE APPLICATIONS

  • TAHK, MIN-JEA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.217-234
    • /
    • 2015
  • In this tutorial the theoretical background of LQ optimal guidance is reviewed, starting from calculus of variations. LQ optimal control is then introduced and applied to missile guidance to obtain the basic form of LQ optimal guidance laws. Extension of LQ optimal guidance methodology for handling weighted cost function, dynamic lag associated with the missile dynamics and the autopilot, constrained impact angle, and constrained impact time is also described with a brief discussion on the asymptotic properties of the optimal guidance laws. Furthermore, an introduction to polynomial guidance and generalized impactangle-control guidance, which are closed related with LQ optimal guidance, is provided to demonstrate the current status of missile guidance techniques.

The effort and agony of dental laboratory for the balanced proportions of dental prosthesis. (보철물의 균형감을 위한 lab side의 고민과 노력)

  • Lee, Seung Sub;Pea, Young Hwan
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.75-83
    • /
    • 2020
  • For the successful prosthetics treatment, the collaboration starting from the initial stage between dental clinic and laboratory is important. However, the collaboration can't persist all the processes, giving the ideal shape to prosthetics is one of the responsible part of dental laboratory. I'm going to explain how to access dental technician to case in restricted circumstance.

Computational study of a small scale vertical axis wind turbine (VAWT): comparative performance of various turbulence models

  • Aresti, Lazaros;Tutar, Mustafa;Chen, Yong;Calay, Rajnish K.
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.647-670
    • /
    • 2013
  • The paper presents a numerical approach to study of fluid flow characteristics and to predict performance of wind turbines. The numerical model is based on Finite-volume method (FVM) discretization of unsteady Reynolds-averaged Navier-Stokes (URANS) equations. The movement of turbine blades is modeled using moving mesh technique. The turbulence is modeled using commonly used turbulence models: Renormalization Group (RNG) k-${\varepsilon}$ turbulence model and the standard k-${\varepsilon}$ and k-${\omega}$ turbulence models. The model is validated with the experimental data over a large range of tip-speed to wind ratio (TSR) and blade pitch angles. In order to demonstrate the use of numerical method as a tool for designing wind turbines, two dimensional (2-D) and three-dimensional (3-D) simulations are carried out to study the flow through a small scale Darrieus type H-rotor Vertical Axis Wind Turbine (VAWT). The flows predictions are used to determine the performance of the turbine. The turbine consists of 3-symmetrical NACA0022 blades. A number of simulations are performed for a range of approaching angles and wind speeds. This numerical study highlights the concerns with the self-starting capabilities of the present VAWT turbine. However results also indicate that self-starting capabilities of the turbine can be increased when the mounted angle of attack of the blades is increased. The 2-D simulations using the presented model can successfully be used at preliminary stage of turbine design to compare performance of the turbine for different design and operating parameters, whereas 3-D studies are preferred for the final design.

Efficient Localization of a Mobile Robot Using Spatial and Temporal Information from Passive RFID Environment (수동 RFID 환경에서의 공간/시간 정보를 이용한 이동로봇의 효율적 위치 추정 기법)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.164-172
    • /
    • 2008
  • This paper presents the efficient localization of a mobile robot traveling on the floor with tags installed, using the spatial and temporal information acquired from passive RFID environment. Compared to previous research, the proposed localization method can reduce the position estimation error and also cut down the initial cost tag installation cost. Basically, it is assumed that a mobile robot is traveling over a series of straight line segments, each at a certain constant velocity, and that the number of tags sensed by a mobile robot at each sampling instant is at most one. First, the velocity and position estimation of a mobile robot starting from a known position, which is valid for all segments except the first one. Second, for the first segment in which the starting position is unknown, the velocity and position estimation is made possible by enforcing a mobile robot to traverse at least two tags at a constant velocity with the steering angle unchanged. Third, through experiments using our passive RFID localization system, the validity and performance of the mobile robot localization proposed in this paper is demonstrated.

  • PDF

A Comparison of Knee and Ankle Coronal Plane Alignment According to Quadriceps Exercise Method in Early Phase of Total Knee Arthroplasty: Lower Extremity Isometric Co-Contraction and Quadriceps Isolated Isometric Contraction (슬관절 전치환술 초기의 대퇴사두근 운동 방법에 따른 슬관절과 족관절의 관상면 정렬 비교: 하지 등척성 동시수축과 대퇴사두근 단독 등척성 수축)

  • Kim, Hyung-soo;Jeong, Young-hee
    • Physical Therapy Korea
    • /
    • v.23 no.1
    • /
    • pp.20-30
    • /
    • 2016
  • Background: Total knee arthroplasty (TKA) recovers the alignment of the knee joint, but fails to automatically restore the alignment and function of the hip and ankle joints. It may affect the alignment and stability of the knee joint, therefore therapeutic intervention in hip and ankle joint is necessary for the rehabilitation process after TKA. Objects: The aim of this study was to comparison of the effects of the two exercise methods on the coronal plane alignment after TKA. This study conducted an experiment by dividing subjects into a lower extremity isometric co-contraction group (LEIC) and a quadriceps isolated isometric contraction (QIIC) group. Methods: A total of 37 subjects were randomly assigned to the LEIC ($n_1$=19) or the QIIC ($n_2$=18). Exercise was applied to five times per week for three weeks, starting on the eighth day after surgery. Range of motion exercises were performed as a common intervention and then each group performed quadriceps isometric contraction exercises with 10 sets of 5 repetitions. Radiological imaging was performed prior to surgery, one month and six months after surgery. In addition, the hip-knee-ankle angle (HKA) and tibiotalar angle (TTA) were measured. Results: The HKA was close to neutral in the LEIC rather than the QIIC (p<.05). The LEIC showed varus and the QIIC exhibited valgus TTA (p<.05). In a comparison of HKA and TTA over time, there was no significant change in either group (p>.05). According to the comparison of the TTA before surgery, the LEIC showed significant changes in the varus direction (p<.05), while there was no significant change in the QIIC (p>.05). Conclusion: The LEIC method triggered changes in the TTA and brought the HKA close to the neutral. Thus, LEIC is more effective than QIIC in creating stability in the coronal plane alignment of the knee and ankle joints after TKA.

A Study on the Rollover Behavior of SUV and Collision Velocity Prediction using PC-Crash Program (PC-Crash를 이용한 SUV의 전복사고 거동 및 충돌속도 예측에 관한 연구)

  • Choi, Yong-Soon;Baek, Se-Ryong;Jung, Jong-Kil;Cho, Jeong-Kwon;Yoon, Jun-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.227-235
    • /
    • 2018
  • Along with the recent increase in traffic volume of vehicles, accidents involving rollover of vehicles have been rapidly increased, resulting in an increase casualties. And to prevent this, various technologies such as vehicle crash test equipment and analysis program development have been advanced. In this study, the applied vehicle model is FORD EXPLORER model, and PC-Crash program for vehicle collision analysis is used to predict the rollover accident behavior of SUV and the collision velocity. Compared with the actual rollover behavior of SUV through the FMVSS No 208 regulations, the analysis results showed similar results, the characteristics of the collision velocity and roll angle showed a tendency that the error rate slightly increased after 1000 msec. Then, as a result of considering using the database of NHTSA, it is shown that the rollover accident occur most frequently in the range of the collision velocity of 15~77 km/h and the collision angle of $22{\sim}74^{\circ}$. And it is possible to estimate the vehicle speed and collision time when the vehicle roof is broken by reconstructing the vehicle starting position, the roof failure position and the stop position by applying the actual accident case.