• Title/Summary/Keyword: Starter/Generator

Search Result 44, Processing Time 0.022 seconds

A Study on the Starter Control of the Turbo Generator (터보 제너레이터의 시동기 제어에 관한 연구)

  • 박승엽;노민식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.286-293
    • /
    • 2004
  • This paper presents the result of a study on the starter control for a turbo generator. Because a starter in gear box type turbo-generator system is composed of gearbox and brush DC motor, it should be replaced with High Speed Generator(HSG)) in HSG type Turbo-generator. There-ore, it is necessary to design a new starting algorithm and starter. In gearbox type system, brush DC motor is rotated to the designed speed using low voltage-high current battery power. After brush DC motor speed is increased to several times by gearbox, gas turbine engine can be rotated to designed starting speed. If we implement a starter with High Speed Generator(HSG), it is necessary to drive high-speed generator to high-speed motor. High-speed generator with permanent magnet on rotor has a low leakage inductance fur driving high-speed rotation, and it is necessary high DC link voltage for inverter when High-speed generator is driven to high speed. This paper presents result of development of the boost converter for converting high voltage DC from low battery voltage and design of the inverter for controlling a high frequency current to be injected to motor winding. Also, we show performance of the designed starter by driving the turbo generator.

Implementation of Constant Power Controlled Starter for A Turbo Generator System (터보 발전기 시스템을 위한 정 출력 제어 방식 시동기 구현)

  • 권정혁;양현섭;노민식;차영범
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.219-222
    • /
    • 2003
  • Turbo generator system need starter for gas turbine engine. Turbo generator has high rate gearbox for reduce rotating speed. Because a conventional generator could not operate same speed of gas turbine engine. But Recently turbo generator system is directly connected a gas turbine engine with a super high-speed generator. In this paper, starter driver are implemented direct coupled turbo generator system, Which is directly connected 100kW, 60,000rpm gas turbine engine and 25kW 60,000rpm super high speed generator.

  • PDF

Mechatronic V8 Engine Start Capabilities of an Automotive Starter/Generator System at the Super Cold Weather

  • Jang, Bong-Choon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.942-949
    • /
    • 2002
  • The use of a combined starter/generator integrated into the drive train of an automobile offers several possibilities for improvement of fuel economy The use of such a starter/generator system is made feasible by a switch from a 14 volts electrical system to a 42 volts system, however, the sizing of the components is not a trivial problem. This study combines a dynamic electromechanical model of the starter, battery and power electronics with the nonlinear mechanics of the piston/crankshaft system and a thermofluid model of the compression and expansion processes to investigate the cold start problem. The example involves the start of an eight cylinder engine at -25 degrees Celsius. This paper shows how the mechatronic V8 engine of an automotive starter/generator system for the startability works well.

A Mathematical Model Development of Automotive Transmission Starter-Generator (자동차 트랜스미션 스타터-제너레이터의 수학적 모델 개발)

  • Jang BongChoon;Karnopp Dean C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.123-128
    • /
    • 2006
  • The proposed mathematical model of the starter-generator system incorporates the motor speed, battery voltage and the desired current to estimate the moment generation capabilities of the starter-generator and the actual current of the battery system. The fundamentals for this mathematical modeling are the simulated results of the experimental data. These pertinent data are used in establishing the governing equations for the determination of motor moments, actual battery currents and efficiencies of the system's operation at different loading characteristics and speed regions. The derived equations will be used into simulation programs to predict the fuel efficiency, vehicle characteristics of a hybrid electric vehicle equipped with a transmission starter-generator which will be developed.

The Evaluation of an Electric Hybrid Power System for the High Endurance Drone (장기체공 드론용 하이브리드 전기 추진시스템 성능 평가)

  • Gang, Byeong Gyu;Kim, Keun-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.539-544
    • /
    • 2022
  • This research shows the test performance of a 6 kW-scale hybrid electric power system for the high endurance drone. The power system is composed of a two-stroke reciprocal engine, starter-generator and battery, and they are integrated as one power unit. The engine is designed to provide the house for holding the starter-generator at the end of a crankshaft in turn the engine and starter-generator can maintain the same speed during the operational period. In this way, the generated power is readily controlled by just manipulating an engine throttle movement. Moreover, the starter-generator can initiate an engine operation with an aid of battery power until the combustion process becomes stabilized. In consequence, integration mechanism between an engine and generator is simplified, which results in weight reduction achieved. The duty of back-up battery is to provide a starting power to generator via a system controller in addition to covering momentarily power shortage. Therefore, the electric power system is vindicated to provide 6 kW power through a ground test.

Design Considerations for Low Voltage Claw Pole Type Integrated Starter Generator (ISG) Systems

  • Lee, Geun-Ho;Choi, Geo-Seung;Choi, Woong-Chul
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.527-532
    • /
    • 2011
  • Due to the need for improved fuel consumption and the trend towards increasing the electrical content in automobiles, integrated starter generator (ISG) systems are being considered by the automotive industry. In this paper, in order to change the conventional generator of a vehicle, a belt driven integrated starter generator is considered. The overall ISG system, the design considerations for the claw pole type AC electric machine and a low voltage very high current power stage implementation are discussed. Test data on the low voltage claw pole type machine is presented, and a large current voltage source DC/AC inverter suitable for low voltage integrated starter generator operation is also presented. A metal based PCB (Printed Circuit Board) power unit to attach the 4-parallel MOS-FETs is used to achieve extremely high current capability. Furthermore, issues related to the torque assistance during vehicle acceleration and the generation/regeneration characteristics are discussed. A prototype with the capability of up to 1000 A and 27 V is designed and built to validate the kilo-amp inverter.

Development of the Starting Algorithm and Starter for Turbo Generator (터보 제너레이터의 시동 알고리즘 및 시동기 개발)

  • 노민식;박승엽
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • The starter of the turbo generator is composed of a high speed generator(HSG), an inverter and a boost converter instead of a gearbox, a DC motor and a low-voltage battery in the starter of the turbo shaft generation system. Because turbo generator is needed a high speed motoring at start-up, high speed generator has a low leakage inductance and inverter need a high DC link voltage. In this study, for developing the stater of a turbo generator, a boost converter with a high capacity was developed to convert high voltage from a low battery voltage. And for controlling a high frequency current to be injected to a motor winding with a low leakage inductance, the inverter with a high precision and a high speed operation was designed and for a stable ignition, the starting algorithm of a turbo generator was proposed. Turbo generator was started by the starter developed to verify the performances.

Firing Angle Control of Soft Starter for Reduction of Inrush Current during Grid Connection of Induction-type Wind Generator (유도형 풍력발전기 계통 연계시 돌입전류 저감을 위한 소프트 스타터 점호각 제어)

  • Song Seung-Ho;Kwon Tae-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.397-402
    • /
    • 2005
  • A new control algorithm of soft starter is proposed for the reduction of the inrush current during the grid connection of the induction-type wind power generator. Currently, the fixed speed wind turbine using induction generator is the most popular wind generation system in Korea. It is shown that the amount of inrush current mainly depends on the control algorithm of the soft starter, a thyristor-based grid connection device. For the simulation study, a 600kw wind turbine simulation model is developed and the transient waveforms are investigated with conventional md proposed methods. Also experimental results using 3.7kW experimental set-up show that the peak value of inrush current is reduced about 20$\%$ using proposed algorithm.

Estimation of the operating characteristics of a turbopump driven by a pyro-starter (파이로시동기로 작동되는 터보펌프의 구동특성 예측)

  • Kim Cheul-Woong;Seol Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.167-170
    • /
    • 2006
  • For a short time a pyre-starter should turn the blades of a turbine to the adequate rotational speed by a single operation. Through this process the pressures of the components of a propellant rise rapidly up to the operating point, and the components enter into a gas-generator. Combustion in the gas-generator occurs to keep the turbopumps working. In this research characteristic parameters of a pyre-starter which correspond to the required performance of the turbopump before the gas-generator starts to work were selected

  • PDF

An Analysis Study for Thermal Design of ISG (Integrated Starter & Generator) for Hybrid Electric Vehicle (하이브리드 차량용 ISG(Integrated Starter Generator)의 방열 설계를 위한 해석적 연구)

  • Kim, Dae Geon;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.120-127
    • /
    • 2013
  • Hybrid electric vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. Electrification of automobiles is indispensable for entering into global market because of enhanced environment restriction. ISG (Integrated Starter & Generator) system is one of main electric parts and can improve fuel efficiency more than other components by using Idle Stop & Go function and regenerative braking system. However, if ISG motor and inverter work under the continuously high load condition, it will make them the decrease of performance and durability. So the ISG motor and inverter need to properly design the cooling system of them. In this study, we suggested the enhancement points by modifying the thermal design of ISG motor and then confirmed the improvement of the cooling performance.