• Title/Summary/Keyword: Starch films

Search Result 38, Processing Time 0.034 seconds

Mechanical Properties of Polyethylene Films Containing Hydroxypropylated Potato Starch (하이드록시프로필화 감자 전분을 함유한 Polyethylene 필름의 기계적 특성)

  • 김미라;이선자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.423-428
    • /
    • 1999
  • Potato starches were hydroxypropylated with 2.5, 5.0, 7.5, and 10.0% propylene oxide(PO) to improve mechanical properties of starch polyethylene film. Starch polyethylene cast films were prepared that contained 5% or 10% of the hydroxypropylated potato starch. Mechanical properties of these films were measured and compared to those of the films containing native potato starch. DS(degree of substitution) increased proportionally as propylene oxide concentration increased. Relative crystallinity in X ray diffraction patterns was decreased and starch granule observed by scanning electron micro scopy was destroyed by severe hydroxypropylation. In color properties of films, b value was not significantly different in the films but 5% starch polyethylene films with 2.5 PO starch showed the lowest L and a value. Tensile strength and strain energy of the films except the film containing 10.0 PO starch were higher than those of the containing native starch.

  • PDF

Mechanical Properties and Degradability of Degradable Polyethylene Films Containing Crosslinked Potato Starch (가교결합 감자 전분을 함유한 분해성 polyethylene 필름의 기계적 성질 및 분해 특성)

  • Kim, Mee-Ra;Lee, Sun-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1298-1305
    • /
    • 2000
  • Potato starches were crosslinked with 0.1, 0.5, 1.0, and 2.0% epichlorohydrin. Starch/polyethylene(PE) cast films were prepared to contain 5% of the crosslinked potato starch. Mechanical properties and degradability of these films were measured and compared to those of the films containing native potato starch. Mechanical strength of the films containing crosslinked potato starch was higher than that of the film containing native starch. Thermal degradability measured by a FT-IR and an Instron showed that crosslinked starch/PE films degraded faster than native starch/PE films. Biodegradability of the starch/PE films was accelerated by the addition of crosslinked starch to the PE films.

  • PDF

Pure Culture Assay with Streptomyces viridosporus T7A for Biodegradability Determination of Oxidized Potato Starch/Polyethylene Films

  • Kim, Meera;Kim, Sung-Hong
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.2
    • /
    • pp.112-116
    • /
    • 2001
  • Oxidized potato starch/polyethylene (PE) cast films were prepared with different percentages of linear low density PE (LLDPE), oxidized potato starch and prooxidant. For the determination of biodegradability of the films, lignocellulose-degrading Streptomyces viridosporus T7A (ATCC 39115) was used. Films were chemically disinfected and incubated with S. viridosporus by shaking at 100 rpm at 37$^{\circ}C$ for eight weeks. Hydroxyl indices of the films by Fourier-Transform Infrared Spectroscopy, mechanical Properties of the films by Instron and film morphology by scanning electron microscope (SEM) were measured. The hydroxyl index of the film containing the oxidized potato starch incubated with S. viridosporus T7A was higher than that of the corresponding control. All the films containing 5% and 10% oxidized starch showed a decrease of tensile strength on the films after incubation when the corresponding uninoculated film was compared. In the oxidized starch/PE film incubated with S. viridosporus T7A, partial destruction of starch and PE was examined by SEM.

  • PDF

Effects of High Pressure Homogenization on Physicochemical Properties of Starch Films (고압균질처리가 전분필름의 물성에 미치는 영향)

  • Kang, Eun-Jung;Lee, Jae-Kwon
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.70-74
    • /
    • 2011
  • The effects of high pressure homogenization (microfluidization) on physicochemical properties of normal maize and oxidized maize starch film were studied. The molecular dispersibility of amlyose and amylopectin and the disintegration of granular structure had a marked effect on the physicochemical properties of starch films. The high pressure homogenized starch films showed increased solubility and transmittance due to the absence of gelatinized starch granules. The tensile strength of starch film increased significantly with decreasing oxygen permeability after high pressure homogenization, indicating that starch molecules were more uniformly and fully dispersed during the film formation. As a result, a clear starch film with improved mechanical properties was obtained after high pressure homogenization due to the increased interactions between the uniformly dispersed starch molecules.

Mechanical Properties and Morphology of Pectin/Starch Blend Films (펙틴/전분 블렌드 필름의 기계적 물성 및 형태학)

  • Shin, Boo-Young
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1008-1013
    • /
    • 1999
  • Mechanical properties and morphology of pectin/starch blend films depending upon the composition and plasticizer ratio were studied. Blends were prepared continuously in a twin-screw extruder. Films were prepared using a single-screw extruder with slit die. Most of the blends showed a good thermoplastic behavior, while the blends with very high ratio of pectin/starch had a poor thermoplasticity. Tensile properties of blend films were changed significantly by the amount of glycerol and relatively little by the ratio of pectin/starch. Differential scanning calorimetry(DSC) curves of wet blends showed a transition similar to glass transition temperature(Tg) at about $125^{\circ}C$. It was found by Scanning electron microscopy(SEM) study that there exists a good interfacial adhesion between pectin and starch.

  • PDF

Thermal-and Bio-degradation of Starch-Polyethylene Films Containing High Molecular Weight Oxidized-Polyethylene

  • Kim, Mee-Ra;Pometto, Anthony-L.
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.1
    • /
    • pp.27-35
    • /
    • 1998
  • Starch-polyethylene films containing high molecular weight(NW) oxidized-polyethylene and prooxidant were prepared , and thermal -and bio-degradability of the films were determined. Increased levels of starch resulted in a corresponding reduction in mechanical strength of the films. However, the addition of high MW oxidized-polyethylene did not significantly reduce the percent elongation of the films. Thefilms containing high MW oxidized-polyethylene andproosicant were degreaded faster than those containing no aadditive during the heat treatment. The films lost their measureable mechanical properties when their weight-average MW(Mw) fell below 50,000. Biodegradability of the films was determined by a pure culture assay with either Streptomyces badius 252.S. setonii 75Vi2 or S. viridosporous T7A, and by an extracellulr enzyme assay using S. setonii 75vi2. The results from pure culture assay indicated that biomass accumulation on the film surface inhibited chemical and biological degradation of the films. The extracellular enzyme assay demonstrated decrease of percent elongation and increase of carbonyl index of the films. Therefore, extracellular enzyme assay could be used as a good method to evaluate biodegradability of the films.

  • PDF

Mechanical Properties of Crosslinked Starch-Filled Waterborne Acrylate Film and Biodegradation by α-Amylase (가교 전분을 충전한 수성 아크릴레이트 필름의 기계적 특성과 α-Amylase에 의한 생분해)

  • Kim Jung-Du;Kam Sang-Kyu;Lee Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.14 no.3
    • /
    • pp.359-366
    • /
    • 2005
  • Starch was crosslinked with epichlorohydrin. Crosslinked starch-filled waterborne acrylate (CSWAC) films were prepared by blending this crosslinked starch with waterborne acrylate. The thermal and mechanical properties of these films were investigated by thermogravimetric analysis (TGA), tensile strength and elongation test. The biodegradability was also studied by determination of reduced sugar products after enzymatic hydrolysis and the surface morphology was investigated by scanning electron microscopy (SEM). The CSW AC film showed significantly higher tensile strength and elongation than those of starch-filled waterbonre acrylate (SWAC). The biodegradability of this film was higher than that of native starch-filled acrylate film, and was increased by the addition of crosslinked starch to the acrylate film.

Biodegradation Characteristics of Starch-Filled Waterborne Acrylate Film (전분을 충전한 수성 아크릴레이트 필름의 생분해 특성)

  • Kim Jung-Du;Kam Sang-Kyu;Ju Chang-Sik;Lee Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1131-1138
    • /
    • 2004
  • The starch-filled waterborne acrylate (SWAC) films were prepared. The structures and properties of SWAC films were investigated by infrared spectroscopy, thermogravimetric analysis, and strength test. The biode­gradability of SWAC film was also studied by determination of reduced sugar products after enzymatic hydrolysis. The surface morphology of the SWAC film was investigated by scanning electron microscopy (SEM). The results showed that the tensile strength and elongation of SWAC film decreased with the increase of starch content. The SWAC film showed significantly higher water absorbed content than waterbonre acrylate film. The biodegradability of SWAC film increased as the content of starch increased. The biodegradation of starch in SWAC film by ${\alpha}-amylase\;was\;about\;77{\%}$ of that of pure starch.

Physical properties of mungbean starch/PVA bionanocomposites added nano-ZnS particles and its photocatalytic activity

  • Yun, Yeon-Hum;Kim, Eun-Sik;Shim, Wang-Geun;Yoon, Soon-Do
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.57-68
    • /
    • 2018
  • The main objective of this study is to prepare the bionanocomposite films using mungbean starch (MBS), PVA, ZnS, and plasticizers, and to evaluate the physical properties, thermal stability, and photocatalytic activity. The bionanocomposite films were cross-linked by heat-curing process. The ZnS and bionanocomposite films were characterized by FT-IR, XRD, and SEM. The results indicated that the mechanical properties and water resistance enhanced up to 1.2-1.5 times by the addition of nano-ZnS particles, and the thermal stability was improved by the addition of nano-ZnS particles. The photocatalytic activity of the bionanocomposite films added nano-ZnS particles was examined using bisphenol A (BPA) and methyl orange (MO). In addition, the photodegradation efficiency of BPA and MO was evaluated using the pseudo-first order kinetic model (PFOK).

Relationship between Moisture Barrier Properties and Sorption Characteristics of Edible Composite Films

  • Ryu, Sou-Youn;Rhim, Jong-Whan;Lee, Won-Jong;Yoon, Jung-Ro;Kim, Suk-Shin
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • Moisture sorption characteristics of edible composite films were determined and compared against moisture barrier properties. Edible composite films were Z1 (zein film with polyethylene glycol(PEG) and glycerol), Z2 (zein film with oleic acid), ZA1 (zein-coated high amylose corn starch film with PEG and glycerol), and ZA2 (zein-coated high amylose corn starch film with oleic acid). Z2 film showed the lowest equilibrium moisture content (EMC), monolayer value ($W_m$), water vapor permeability (WVP), and water solubility (WS). Surface structure of Z2 was relatively denser and finer than that of other edible films. GAB $W_m$ and C values decreased, while K values increased with increasing temperature. Correlation coefficients of WS:EMC and WVP:EMC at Aw 0.75 were higher than those of WS: $W_m$ and WVP: $W_m$, respectively. EMC values at Aw 0.75 appeared useful for evaluating or predicting moisture barrier properties of edible films.