DOI QR코드

DOI QR Code

Physical properties of mungbean starch/PVA bionanocomposites added nano-ZnS particles and its photocatalytic activity

  • Yun, Yeon-Hum (Department of Energy & Resources Engineering, Chonnam National University) ;
  • Kim, Eun-Sik (Department of Environmental System Engineering, Chonnam National University) ;
  • Shim, Wang-Geun (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Yoon, Soon-Do (Department of Chemical and Biomolecular Engineering, Chonnam National University)
  • Received : 2018.05.08
  • Accepted : 2018.07.21
  • Published : 2018.12.25

Abstract

The main objective of this study is to prepare the bionanocomposite films using mungbean starch (MBS), PVA, ZnS, and plasticizers, and to evaluate the physical properties, thermal stability, and photocatalytic activity. The bionanocomposite films were cross-linked by heat-curing process. The ZnS and bionanocomposite films were characterized by FT-IR, XRD, and SEM. The results indicated that the mechanical properties and water resistance enhanced up to 1.2-1.5 times by the addition of nano-ZnS particles, and the thermal stability was improved by the addition of nano-ZnS particles. The photocatalytic activity of the bionanocomposite films added nano-ZnS particles was examined using bisphenol A (BPA) and methyl orange (MO). In addition, the photodegradation efficiency of BPA and MO was evaluated using the pseudo-first order kinetic model (PFOK).

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. J.L. Willett, W.M. Doane, Polym 43 (2002) 4413. https://doi.org/10.1016/S0032-3861(02)00274-4
  2. F. Ivanic, D. Jochec-Moskova, I. Chodak, J. Eur. Polym. 93 (2017) 843. https://doi.org/10.1016/j.eurpolymj.2017.04.006
  3. P. Cazon, G. Velazquez, J.A. Ramirez, M. Vazquez, Food Hydrocolloids 68 (2017) 136. https://doi.org/10.1016/j.foodhyd.2016.09.009
  4. D. Huang, W. Wang, J. Xu, A. Wang, J. Chem. Eng. 210 (2012) 166. https://doi.org/10.1016/j.cej.2012.08.096
  5. Y. Liu, S. Wang, W. Lan, Int. J. Biol. Macromol. 107 (2018) 848. https://doi.org/10.1016/j.ijbiomac.2017.09.044
  6. E.H. Kim, G.D. Han, S.H. Noh, J.W. Kim, J.G. Lee, Y. Ito, T.I. Son, J. Ind. Eng. Chem. 54 (2017) 1. https://doi.org/10.1016/j.jiec.2017.05.029
  7. A.A. Aydin, V. Ilberg, Carbohydr. Polym. 136 (2016) 441. https://doi.org/10.1016/j.carbpol.2015.08.093
  8. Z. Liu, Y. Dong, H. Men, M. Jiang, J. Tonga, J. Zhou, Carbohydr. Polym. 89 (2012) 473. https://doi.org/10.1016/j.carbpol.2012.02.076
  9. A. Ali, F. Xie, L. Yu, H. Liu, L. Meng, S. Khalid, L. Chen, Compos. Partt B Eng. 133 (2018) 122. https://doi.org/10.1016/j.compositesb.2017.09.017
  10. X. Luo, J. Li, X. Lin, Carbohydr. Polym. 90 (2012) 1595. https://doi.org/10.1016/j.carbpol.2012.07.036
  11. X. Jia, J. Listak, V. Witherspoon, E.E. Kalu, X. Yang, M.R. Bockstaller, Langmuir 26 (2010) 12190. https://doi.org/10.1021/la100840a
  12. F. Xie, E. Pollet, P.J. Halley, L. Averous, Prog. Polym. Sci. 38 (2013) 1590. https://doi.org/10.1016/j.progpolymsci.2013.05.002
  13. M. Naushad, T. Ahamad, G. Sharma, A.H. Al-Muhtaseb, A.B. Albadarin, M.M. Alam, Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, J. Chem. Eng. 300 (2016) 306. https://doi.org/10.1016/j.cej.2016.04.084
  14. C.M.O. Müller, J.B. Laurindo, F. Yamashita, Ind. Crop. Prod. 33 (2011) 605. https://doi.org/10.1016/j.indcrop.2010.12.021
  15. K. Majdzadeh-Ardakani, B. Nazari, Compos. Sci. Technol. 70 (2010) 1557. https://doi.org/10.1016/j.compscitech.2010.05.022
  16. S. Tang, P. Zou, H. Xiong, H. Tang, Carbohydr. Polym. 72 (2008) 521. https://doi.org/10.1016/j.carbpol.2007.09.019
  17. K. Yao, J. Cai, M. Liu, Y. Yu, H. Xiong, S. Tang, S. Ding, Carbohydr. Polym. 86 (2011) 1784. https://doi.org/10.1016/j.carbpol.2011.07.008
  18. K. Frost, J. Barthes, D. Kaminski, E. Lascaris, J. Niere, R. Shanks, Carbohydr. Polym. 84 (2011) 343. https://doi.org/10.1016/j.carbpol.2010.11.042
  19. B.S. Harrison, A. Atala, Biomaterials 28 (2007) 344. https://doi.org/10.1016/j.biomaterials.2006.07.044
  20. L.M. Fama, V. Pettarin, S.N. Goyanes, C.R. Bernal, Carbohydr. Polym. 83 (2011) 1226. https://doi.org/10.1016/j.carbpol.2010.09.027
  21. X. Ma, J. Yu, N. Wang, Compos. Sci. Technol. 68 (2008) 268. https://doi.org/10.1016/j.compscitech.2007.03.016
  22. X. Ma, P.R. Chang, J. Yu, P. Lu, Starch Starke 60 (2008) 373. https://doi.org/10.1002/star.200800211
  23. X. Ma, P.R. Chang, J. Yang, J. Yu, Carbohydr. Polym. 75 (2009) 472. https://doi.org/10.1016/j.carbpol.2008.08.007
  24. T. Ma, P.R. Chang, P. Zheng, X. Ma, Carbohydr. Polym. 94 (2013) 63. https://doi.org/10.1016/j.carbpol.2013.01.007
  25. J. Jose, M.A. Al-Harthi, M.A.A. AlMaadeed, J.B. Dakua, S.K. De, J. Appl. Polym. Sci. 132 (2015) 41827.
  26. Y. Feng, N. Feng, G. Dua, RSC Adv. 3 (2013) 21466. https://doi.org/10.1039/c3ra43025a
  27. H.S. Byun, M.H. Park, G.T. Lim, S.D. Yoon, J. Nanosci. Nanotechnol. 11 (2011) 1701. https://doi.org/10.1166/jnn.2011.3331
  28. R. Hoover, Y.X.L. Hynes, N. Senanayake, Food Hydrocolloids 11 (1997) 401. https://doi.org/10.1016/S0268-005X(97)80037-9
  29. Y.H. Yun, H.G. Youn, J.Y. Shin, S.D. Yoon, Int. J. Biol. Macromol. 104 (2017) 1150. https://doi.org/10.1016/j.ijbiomac.2017.07.016
  30. B.O. Juliano, Cereal Sci. Today 16 (1971) 334.
  31. J. Chrastil, Carbohydr. Res. 159 (1987) 154. https://doi.org/10.1016/S0008-6215(00)90013-2
  32. S.R. Cho, H.G. Cho, J. Korean Chem. Soc. 57 (2013) 432. https://doi.org/10.5012/jkcs.2013.57.4.432
  33. K. Park, H.J. Yu, W.K. Chung, B.J. Kim, S.H. Kim, J. Mater. Sci. 44 (2009) 4315. https://doi.org/10.1007/s10853-009-3641-2
  34. C.M. Eggleston, S. Hug, W. Stumm, B. Sulzberger, M.D.S. Afonso, Geochim. Cosmochim. Acta 62 (1998) 585. https://doi.org/10.1016/S0016-7037(97)00372-4
  35. D.M. Panaitescu, A.N. Frone, M. Ghiurea, I. Chiulan, Ind. Crops Prod. 70 (2015) 170. https://doi.org/10.1016/j.indcrop.2015.03.028
  36. E.A. Bursali, S. Coskun, M. Kizil, M. Yurdakoc, Carbohyr. Polym. 83 (2011) 1377. https://doi.org/10.1016/j.carbpol.2010.09.056
  37. S. Maiti, D. Ray, D. Mitra, S. Sengupta, T. Kar, J. Appl. Polym. Sci.122 (2011) 2503. https://doi.org/10.1002/app.34377
  38. P.A. Sreekumar, M.A. Al-Harthi, S.K. De, J. Compos. Mater. 46 (2012) 3181. https://doi.org/10.1177/0021998312436998
  39. Y.H. Yun, S.D. Yoon, Polym. Bull. 64 (2010) 553. https://doi.org/10.1007/s00289-009-0158-4
  40. J.B. Zeng, L. Jiao, Y.D. Li, M. Srinivasan, T. Li, Y.Z. Wang, Carbohydr. Polym. 83 (2011) 762. https://doi.org/10.1016/j.carbpol.2010.08.051
  41. S. Radhu, C. Vijayan, Mater. Chem. Phys. 129 (2011) 1132. https://doi.org/10.1016/j.matchemphys.2011.05.073
  42. S.D. Yoon, H.S. Byun, Y.H. Yun, Ceram. Int. 41 (2015) 8241. https://doi.org/10.1016/j.ceramint.2015.02.137
  43. S.D. Yoon, E.S. Kim, Y.H. Yun, J. Ind. Eng. Chem. 64 (2018) 230. https://doi.org/10.1016/j.jiec.2018.03.019
  44. F. Li, P. Du, W. Liu, X. Li, H. Ji, J. Duan, D. Zhao, J. Chem. Eng. 331 (2018) 685. https://doi.org/10.1016/j.cej.2017.09.036
  45. Y. Li, H. Zhao, M. Yang, J. Colloid Interface Sci. 508 (2017) 500. https://doi.org/10.1016/j.jcis.2017.08.076

Cited by

  1. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review vol.251, pp.None, 2018, https://doi.org/10.1016/j.carbpol.2020.116986
  2. Metal Organic Frameworks Derived Sustainable Polyvinyl Alcohol/Starch Nanocomposite Films as Robust Materials for Packaging Applications vol.13, pp.14, 2018, https://doi.org/10.3390/polym13142307
  3. Insight into the bionanocomposite applications on wastewater decontamination: Review vol.43, pp.None, 2021, https://doi.org/10.1016/j.jwpe.2021.102198
  4. Compatibilization of Starch/Synthetic Biodegradable Polymer Blends for Packaging Applications: A Review vol.5, pp.11, 2018, https://doi.org/10.3390/jcs5110300