• Title/Summary/Keyword: Standby system

Search Result 214, Processing Time 0.031 seconds

Reliability analysis of multi-state parallel system with a multi-functional standby component (다기능 대기부품을 갖는 다중상태 병렬시스템의 신뢰도 분석)

  • Kim, Dong-Hyeon;Lee, Suk-Hoon;Lim, Jae-Hak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.4
    • /
    • pp.75-87
    • /
    • 2015
  • A redundant structure typically consists of primary component and standby component taking over the function of the primary component when the primary component fails. In this research, we consider a redundant structure in which a standby component can take over the function of more than one primary component when primary components fail. And we assume that the system has multi-state according to the states of components while all components have two states. This system is called as the multi-state redundant system with a multi-functional standby component. This type of redundant structure is frequently adapted by the system such as an aircraft in which the weight is an important design factor. In this paper, we propose new reliability model for this multi-state redundant system with a multi-functional standby component in order for evaluating the reliability of the system. Under the assumption that all components have constant failure rate, we evaluate the reliability of the system by applying Markov analysis method. And we investigate the effect of the multi-functional standby component by comparing reliabilities of the parallel system with multi-functional standby component and a simple parallel system and a parallel system with redundant structure.

Bayes Estimators for Reliablity of a k-Unit Standby System with Perfect Switch

  • Lee, Changsoo;Kim, Keehwan;Park, Youngmi
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.435-442
    • /
    • 2001
  • Bayes estimators and generalized ML estimators for reliability of a k-unit hot standby system with the perfect switch based upon a complete sample of failure times observed from an exponential distribution using noninformative, generalized uniform, and gamma priors for the failure rate are proposed, and MSE's of proposed several estimators for the standby system reliability are compared numerically each other through the Monte Carlo simulation.

  • PDF

Reducing Standby Power Consumption System by Monitoring the AC Input Current for the AV Devices (AV 기기를 위한 AC 입력 전류 모니터링 대기 전력 저감 시스템)

  • Lee, Dae Sik;Yi, Kang Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1493-1496
    • /
    • 2016
  • This paper proposes a system for reducing the standby power consumption in using the consumer electronic devices such as a television, a home theater, a set-top box, or a DVD player. The system is consisted of a flyback converter, monitoring circuits, a relay and a micro-processor. The proposed system can reduce the standby power consumption by disconnecting the AC input and the consumer devices can be turned on with a remote control. The proposed standby power system consumes the low power to receive the infrared signal from the remote controller. Furthermore, a electronic double layer capacitor is used to store the energy with high efficiency. The proposed power system can operate the 플라이백 converter to charge the electronic double layer capacitor and connect the AC input to the consumer electronic devices. The proposed power circuit can reduce the standby power consumption in AV devices without increasing the cost. The prototype is implemented to verify the system with the commercialized products.

Development of a Sensor-Based LED Lighting System with Low Standby Power (대기전력 저감형 LED 센서 조명시스템의 개발)

  • Kim, Jin-Geun;Kang, Moon-Sung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.18-22
    • /
    • 2012
  • In this paper, we propose a sensor-based LED lighting system that can significantly reduce standby powers. The proposed LED lighting system has the more advanced power circuit and control mechanism compared to existing one. The whole power circuit consists of two subcircuits. One is designed to apply electric powers to controller, PIR(Pyroelectric Infrared Ray) sensor and CdS, and the other one is designed to apply electric powers to LED module. Such a power circuit configuration makes the standby powers reduction of LED lighting system possible. From the experimental results, we confirmed that the standby powers saving performance of the developed power circuit is superior to that of the conventional one.

Reliability of a k-out-of-n Cold Standby System with Imperfect Switches

  • Abouammoh, A.M.;Sarhan, Ammar M.
    • International Journal of Reliability and Applications
    • /
    • v.2 no.4
    • /
    • pp.253-262
    • /
    • 2001
  • A k-out-of-n standby system is considered where all of its components are s-independent and classified either working or cold standby connected with imperfect switches. The probability density function of the life length for this system is established in closed form, when the underlying components have constant failure rates. Also the reliability function of the system is derived. Finally, the reliability functions for one, two and three out of four systems are deduced for perfect or imperfect switches and identical or non-identical constant failure rates for working and standby components.

  • PDF

A Study on Design and Reliability Assessment for Embedded Hot-Standby Sparing FT System Using Self-Checking Logic (자기검사회로를 이용한 대기이중계구조 결함허용제어기의 설계 및 신뢰도평가에 관한 연구)

  • Lee, Jae-Ho;Lee, Kang-Mi;Kim, Young-Kyu;Shin, Duc-Ko
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.725-731
    • /
    • 2006
  • Hot Standby sparing system detecting faults by using software, and being tolerant any faults by using Hardware Redundancy is difficult to perform quantitative reliability prediction and to detect real time faults. Therefore, this paper designs Hot Standby sparing system using hardware basis self checking logic in order to overcome this problem. It also performs failure mode analysis of Hot Standby sparing system with designed self checking logic by using FMEA (Failure Mode Effect Analysis), and identifies reliability assessment of the controller designed by quantifying the numbers of failure development by using FTA (Fault Tree Analysis)

Class-E Power Amplifier with Minimal Standby Power for Wireless Power Transfer System

  • Kim, Bong-Chul;Lee, Byoung-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.250-255
    • /
    • 2018
  • This paper presents a method for minimizing standby power consumption in wireless power transfer (WPT) system via magnetic resonance coupling (MRC) that operates at 6.78 MHz. The proposed circuit controls the required capacitance according to operational condition in order to reduce standby power consumption. Based on an impedance characteristic of the class-E power amplifier, operational principles of the proposed circuit are analyzed. Moreover, to verify the effectiveness of the proposed class-E power amplifier, an 8 W prototype for WPT system is implemented. The measured input power of the proposed class-E power amplifier at standby condition is reduced from 5.81 W to 3.53 W.

Design and Implementation of MQTT-based Standby Power Reduction System in Z-Wave Network Environment (Z-Wave 네트워크 환경에서 MQTT 기반 대기전력 절감 시스템 설계 및 구현)

  • Jang, Young-Hwan;Park, Seok-Cheon;Yoon, Seok-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.421-429
    • /
    • 2020
  • Recently, with the development of IoT technology and the increase of energy consumption, interest in energy saving and energy efficiency improvement is rapidly increasing. In particular, in the case of a device connected to a power plug with the power shutoff, a problem with standby power has been raised. Thus technology development through a low power method such as Zigbee is in progress. However, Zigbee, which is generally used, has a problem that a separate gateway is required because it is not an IP-based technology, and there is a problem that it is not suitable for a traditional computer network to which a variety of devices are connected. Therefore, in this paper, we designed and implemented a standby power saving system using MQTT, an IoT standard protocol, in Z-Wave environment. In order to evaluate the implemented standby power saving system, the same environment as the existing Zigbee-based standby power saving system was compared and evaluated.

THE FAILURE RATE AND LIKELIHOOD RATION ORDERINGS OF STANDBY REDUNDANT SYSTEMS

  • Choi, In-Kyeong;Kim, Gie-Whan
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.1
    • /
    • pp.41-50
    • /
    • 1998
  • There are various notions of partial ordering between life-times of systems; stochastic ordering failure rate ordering and likeli-hood ration ordering. In this paper we show that for series systems with non i.i.d. exponential lifetimes of components standby redundancy at component level is better than that at system level in failure rate or-dering and likelihood ratio ordering. We also demonstrate that for 2-component parallel systems with i.i.d. exponential lifetimes of com-ponents standby system redundancy is better than standby component redundancy in failure rate ordering and likelihood ratio ordering.

Reliability analysis of an embedded system with multiple vacations and standby

  • Sharma, Richa;Kaushik, Manju;Kumar, Gireesh
    • International Journal of Reliability and Applications
    • /
    • v.16 no.1
    • /
    • pp.35-53
    • /
    • 2015
  • This investigation deals with reliability and sensitivity analysis of a repairable embedded system with standby wherein repairman takes multiple vacations. The hardware system consists of 'M' operating and 'S' standby components. The repairman can leave for multiple vacations of random length during its idle time. Whenever any operating unit fails, it is immediately replaced by a standby unit if available. Moreover, governing equations of an embedded system are constructed using appropriate birth-death rates. The vacation and repair time of repairman are exponentially distributed. The matrix method is used to find the steady-state probabilities of the number of failed components in the embedded system as well as other performance measures. Reliability indexes are presented. Further, numerical experiments are carried out for various system characteristics to examine the effects of different parameter. Using a special class of neuro-fuzzy systems i.e. Adaptive Network-based Fuzzy Interference Systems (ANFIS), we also approximate various performance measures. Finally, the conclusions and future research directions are provided.