• Title/Summary/Keyword: Standardized Precipitation Index (SPI)

Search Result 147, Processing Time 0.032 seconds

Peak drought index analysis of cheongmicheon watershed using meteorological and hydrological drought index (기상학적 및 수문학적 가뭄지수를 이용한 청미천 유역의 첨두가뭄지수 분석)

  • Kim, Soo Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.65-73
    • /
    • 2017
  • This study analyzed the peak drought severity and drought duration of the Cheongmicheon watershed from 1985 to 2015 to assess the lag time of peak drought severity between several drought indices. Standardized Precipitation Index (SPI) based on precipitation and Standardized Precipitation Evapotranspiration Index (SPEI) based on precipitation and evapotranspiration were applied as meteorological drought indices. Streamflow Drought Index (SDI) based on runoff data was applied as hydrological drought index. In case of SDI, we used Soil and Water Assessment Tool (SWAT) model for simulation of daily runoff data. As a result, the time of peak drought severity of SDI occurred after the occurrence of SPI and SPEI. The lag time for the peak drought severity, on average, between SDI and SPI was 0.59 months while SDI and SPEI was 0.79 months. As compared with SDI, the maximum delay was 2 months for both SPI and SPEI. This study results also shows that even though the rainfall events were able to cope with meteorological droughts, they were not always available to solve the hydrological droughts in the same time.

Development of Quantitative Standardized Precipitation Index (정량적 표준가뭄지수 개발)

  • Cho, Hyungon;Lim, Yoon-Jin;Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.342-342
    • /
    • 2017
  • 기후변화로 인한 극한기상의 강도와 빈도가 증가하고 있어 국가 물안보와 수자원 관리에 어려움을 겪고 있다. 특히 가뭄은 음용수 부족과 관개용수 및 발전용수 부족 등 사회, 경제, 환경 전반에 걸쳐 미치는 피해 영향의 범위가 크다. 가뭄으로 인한 피해감소와 대응 및 대책 전략 수립에 있어서 일반적으로 기상학적 가뭄지수 SPI(Standardized Precipitation Index)을 많이 사용하고 있다. SPI는 누적강수량 자료를 이용하며 누적강수 기간(월)에 따라 SPI3, SPI6 등으로 평가한다. 이 방법은 누적강우량을 감마함수에 적합하고 다시 누가표준정규분포에 투영함으로써 가뭄심도를 평가한다. 그러나 분포의 꼬리 부분에 해당하는 가뭄값들의 정량적 평가가 어려우며 강우자료가 가지는 분산의 특성을 반영하지 못하는 단점이 있다. 본 연구에서는 가뭄의 정량적 평가와 가뭄자료 자체의 분산의 특성을 고려한 정량적 표준가뭄지수(QSPI:Quantitative Standardized Precipitation Index)를 개발, 가뭄을 평가하고 SPI와 비교 분석 하였다.

  • PDF

Evaluation of Short-Term Drought Using Daily Standardized Precipitation Index and ROC Analysis (일 단위 SPI와 ROC 분석을 이용한 단기가뭄의 평가)

  • Yoo, Ji Young;Song, Hoyong;Kim, Tae-Woong;Ahn, Jae-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1851-1860
    • /
    • 2013
  • The Standardized Precipitation Index (SPI) is widely applied to evaluate for meteorological droughts. However, the SPI is limited to capture a drought event with a short duration, expecially shorter than one month. In this study, we proposed a daily SPI (DSPI) as a way to overcome the limitation of the monthly SPI for drought monitoring. In order to objectively assess the ability of the drought reproduction of the DSPI, we performed a receiver operating characteristic (ROC) analysis using the quantified drought records from official reports, newspapers, etc. The results of ROC analysis showed that the DSPI has an ability to reproduce short-term drought compared with other indices. It also showed that the main cause of historical droughts was the shortage of rainfall accumulated during the time period less than 90 days compared with the rainfall of normal years.

Comparison and Analysis of Drought Index based on MODIS Satellite Images and ASOS Data for Gyeonggi-Do (경기도 지역에 대한 MODIS 위성영상 및 지점자료기반 가뭄지수의 비교·분석)

  • Yu-Jin, KANG;Hung-Soo, KIM;Dong-Hyun, KIM;Won-Joon, WANG;Han-Eul, LEE;Min-Ho, SEO;Yun-Jae, CHOUNG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.1-18
    • /
    • 2022
  • Currently, the Korea Meteorological Administration evaluates the meteorological drought by region using SPI6(standardized precipitation index 6), which is a 6-month cumulative precipitation standard. However, SPI is an index calculated only in consideration of precipitation at 69 weather stations, and the drought phenomenon that appears for complex reasons cannot be accurately determined. Therefore, the purpose of this study is to calculate and compare SPI considering only precipitation and SDCI (Scaled Drought Condition Index) considering precipitation, vegetation index, and temperature in Gyeonggi. In addition, the advantages and disadvantages of the station data-based drought index and the satellite image-based drought index were identified by using results calculated through the comparison of SPI and SDCI. MODIS(MODerate resolution Imaging Spectroradiometer) satellite image data, ASOS(Automated Synoptic Observing System) data, and kriging were used to calculate SDCI. For the duration of precipitation, SDCI1, SDCI3, and SDCI6 were calculated by applying 1-month, 3-month, and 6-month respectively to the 8 points in 2014. As a result of calculating the SDCI, unlike the SPI, drought patterns began to appear about 2-month ago, and drought by city and county in Gyeonggi was well revealed. Through this, it was found that the combination of satellite image data and station data increased efficiency in the pattern of drought index change, and increased the possibility of drought prediction in wet areas along with existing dry areas.

Comparison of Surface Water and Groundwater Responses to Drought using the Standardized Precipitation Index (SPI) (표준강수지수(SPI)를 이용한 가뭄에 대한 지표수와 지하수 반응 비교)

  • Koo, Min-Ho;Kim, Wonkyeom;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • A correlation analysis was performed to investigate differences in the response of surface water and groundwater to drought using the Standardized Precipitation Index (SPI). Water level data of 20 agricultural reservoirs, 4 dams, 2 rivers, and 8 groundwater observation wells were used for the analysis. SPI was calculated using precipitation data measured at a nearby meteorological station. The water storage of reservoirs and dams decreased significantly as they responded sensitively to the drought from 2014 to 2016, showing high correlation with SPI of the relatively long accumulation period (AP). The responses of rivers varied greatly depending on the presence of an upstream dam. The water level in rivers connected to an upstream dam was predominantly influenced by the dam discharge, resulting in very weak correlation with SPI. On the contrary, the rivers without dam exhibited a sharp water level rise in response to precipitation, showing higher correlation with SPI of a short-term AP. Unlike dams and reservoirs, the responses of groundwater levels to precipitation were very short-lived, and they did not show high correlation with SPI during the long-term drought. In drought years, the rise of groundwater level in the rainy season was small, and the lowered water level in the dry season did not proceed any further and was maintained at almost the same as that of other normal years. Conclusively, it is confirmed that groundwater is likely to persist longer than surface water even in the long-term drought years.

Assessment of Drought Severity over South Korea using Standardized Precipitation Evapo-transpiration Index (SPEI) (표준강수 증발산지수(SPEI)를 이용한 남한지역의 가뭄심도 평가)

  • Kim, Byung-Sik;Sung, Jang-Hyun;Kang, Hyun-Suk;Cho, Chun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.887-900
    • /
    • 2012
  • Drought is a non-negligible disaster of nature and it is mainly caused by rainfall shortage for a long time though there are many definitions of drought. 'Standard Precipitation Index' (SPI) that is widely used to express the level of meteorological drought intensity has a limit of not being able to consider the hydrological changes such as rainfall and evapotranspiration caused by climate change, because it does not consider the temperature-related variables other than the precipitation. Recently, however, 'Standardized Precipitation Evapotranspiration Index' (SPEI), a drought index of new concept which is similar to SPI but can reflect the effect of temperature variability as well as the rainfall change caused by climate variation, was developed. In this study, the changes of drought occurrence in South Korea were analyzed by applying SPEI for meteorological data (1973~2011) of 60 climate observatories under Korea Meteorological Administration (KMA). As the result of application, both of SPI and SPEI showed the trend of deepening drought in spring and winter and mitigating drought in summer for the entire nation, with SPI showing greater drought intensity than SPI. Also, SPI and SPEI with 12 months of duration showed that severe droughts with low frequency of around 6 years are generally being repeated.

Comparative Evaluation of Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) for Meteorological Drought Detection over Bangladesh (SPI와 EDI 가뭄지수의 방글라데시 기상가뭄 평가 적용성 비교)

  • Kamruzzaman, M.;Cho, Jaepil;Jang, Min-Won;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.145-159
    • /
    • 2019
  • A good number of drought indices have been introduced and applied in different regions for monitoring drought conditions, but some of those are region-specific and have limitations for use under other climatic conditions because of the inherently complex characteristics of drought phenomenon. Standardized Precipitation Index (SPI) indices are widely used all over the world, including Bangladesh. Although newly developed, studies have demonstrated The Effective Drought Index (EDI) to perform better compared to SPIs in some areas. This research examined the performance of EDI to the SPI for detecting drought events throughout 35 years (1981 to 2015) in Bangladesh. Rainfall data from 27 meteorological stations across Bangladesh were used to calculate the EDI and SPI values. Results suggest that the EDI can detect historical records of actual events better than SPIs. Moreover, EDI is more efficient in assessing both short and long-term droughts than SPIs. Results also indicate that SPI3 and the EDI indices have a better capability of detecting drought events in Bangladesh compared to other SPIs; however, SPI1 produced erroneous estimates. Therefore, EDI is found to be more responsive to drought conditions and can capture the real essence of the drought situation in Bangladesh. Outcomes from this study bear policy implications on mitigation measures to minimize the loss of agricultural production in drought-prone areas. Information on severity level and persistence of drought conditions will be instrumental for resource managers to allocate scarce resources optimally.

A Study on Target Standardized Precipitation Index in Korea (한반도 목표 표준강수지수(SPI) 산정에 관한 연구)

  • Kim, Min-Seok;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1117-1123
    • /
    • 2014
  • Water is a necessary condition of plants, animals and human. The state of the water shortage, that drought is globally one of the most feared disasters. This study was calculated target standardized precipitation index with unit of region for judgment and preparation of drought in consideration of the regional characteristics. First of all, Standardized Precipitation Index (3) were calculated by monthly rainfall data from rainfall data more than 30 years of 88 stations. Parametric frequency and nonparametric frequency using boundary kernel density function were analysed using annual minimum data that were extracted from calculated SPI (3). Also, Target return period sets up 30 year and target SPI analysed unit of region using thiessen by result of nonparametric frequency. Analyzed result, Drought was entirely different from severity and frequency by region. This study results will contribute to a national water resources plan and disaster prevention measures with data foundation for judgment and preparation of drought in korea.

ROC evaluation for MLP ANN drought forecasting model (MLP ANN 가뭄 예측 모형에 대한 ROC 평가)

  • Jeong, Min-Su;Kim, Jong-Suk;Jang, Ho-Won;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.877-885
    • /
    • 2016
  • In this study, the Standard Precipitation Index(SPI), meteorological drought index, was used to evaluate the temporal and spatial assessment of drought forecasting results for all cross Korea. For the drought forecasting, the Multi Layer Perceptron-Artificial Neural Network (MLP-ANN) was selected and the drought forecasting was performed according to different forecasting lead time for SPI (3) and SPI (6). The precipitation data observed in 59 gaging stations of Korea Meteorological Adminstration (KMA) from 1976~2015. For the performance evaluation of the drought forecasting, the binary classification confusion matrix, such as evaluating the status of drought occurrence based on threshold, was constituted. Then Receiver Operating Characteristics (ROC) score and F score according to conditional probability are computed. As a result of ROC analysis on forecasting performance, drought forecasting performance, of applying the MLP-ANN model, shows satisfactory forecasting results. Consequently, two-month and five-month leading forecasts were possible for SPI (3) and SPI (6), respectively.

Hydrometeorological Characteristics and The Spatial Distribution of Agricultural Droughts (농업가뭄의 수문기상학적 특성 및 공간적 분포에 관한 연구)

  • Jang, Jung seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.105-115
    • /
    • 2019
  • For 159 administrative areas, SPI(Standardized Precipitation Index), ARDI(Agricultural Reservoir Drought Index) and ARDIs(Agricultural Reservoir Drought Index Simulated) were developed and applied to analyze the characteristics of agricultural drought index and agricultural droughts. In order to identify hydrometeorological characteristics of agricultural droughts, SPI, ARDI and ARDIs were calculated nationwide, and the applicability was compared and examined. SPI and ARDI showed significant differences in time and depth of drought in both spatial and temporal. ARDI and ARDIs showed similar tendency of change, and ARDIs were considered to be more representative of agricultural drought characteristics. The results of this study suggest that agricultural drought is a problem to be solved in the medium and long term rather than short term due to various forms of development, complexity of development, and difficulty in forecasting. Therefore, it is concluded that a preliminary and systematic approach is needed in consideration of meteorological, hydrological and hydrometeorological characteristics rather than a fragmentary approach, and that an agricultural drought index is needed to quantitatively evaluate agricultural drought.