DOI QR코드

DOI QR Code

Peak drought index analysis of cheongmicheon watershed using meteorological and hydrological drought index

기상학적 및 수문학적 가뭄지수를 이용한 청미천 유역의 첨두가뭄지수 분석

  • Kim, Soo Hyun (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Chung, Eun-Sung (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 김수현 (서울과학기술대학교 건설시스템학과) ;
  • 정은성 (서울과학기술대학교 건설시스템학과)
  • Received : 2016.11.18
  • Accepted : 2016.12.27
  • Published : 2017.01.31

Abstract

This study analyzed the peak drought severity and drought duration of the Cheongmicheon watershed from 1985 to 2015 to assess the lag time of peak drought severity between several drought indices. Standardized Precipitation Index (SPI) based on precipitation and Standardized Precipitation Evapotranspiration Index (SPEI) based on precipitation and evapotranspiration were applied as meteorological drought indices. Streamflow Drought Index (SDI) based on runoff data was applied as hydrological drought index. In case of SDI, we used Soil and Water Assessment Tool (SWAT) model for simulation of daily runoff data. As a result, the time of peak drought severity of SDI occurred after the occurrence of SPI and SPEI. The lag time for the peak drought severity, on average, between SDI and SPI was 0.59 months while SDI and SPEI was 0.79 months. As compared with SDI, the maximum delay was 2 months for both SPI and SPEI. This study results also shows that even though the rainfall events were able to cope with meteorological droughts, they were not always available to solve the hydrological droughts in the same time.

본 연구는 청미천 유역을 대상으로 1985년부터 2015년까지의 가뭄지수를 이용하여 첨두 가뭄심도와 가뭄기간을 분석하였다. 이을 위해 기상학적 가뭄지수로는 강수량만을 변수로 하는 SPI (Standardized Precipitation Index)와 강수량과 증발산량을 함께 고려하는 SPEI (Standardized Precipitation Evapotranspiration Index)를 적용하였으며, 수문학적 가뭄지수는 유역의 유출량을 변수로 하는 SDI (Streamflow drought index)를 적용하였다. SDI의 경우 청미천 유역을 구축한 SWAT 모형을 이용하여 도출한 유출량을 사용하였다. 그 결과 첨두 가뭄심도의 발생시기는 SPI, SPEI의 발생 후에 SDI가 발생하는 양상을 보였으며 평균적으로 SDI와 SPI는 0.59개월, SPEI는 0.72개월의 차이를 보인다. 최대 발생지체 시간은 SPI, SPEI 모두 2개월을 보인다. 또한 기상학적 가뭄이 해결될 수 있는 강우량임에도 수문학적 가뭄을 해결하지 못하는 경우가 발생함을 확인하였다.

Keywords

References

  1. Beven, K. (1989). "Changing ideas in hydrology-the case of physicallybased models." Journal of. Hydrology, Vol. 105, pp. 157-172. https://doi.org/10.1016/0022-1694(89)90101-7
  2. Beven, K. (2002). "Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system." Hydrological Processes, Vol. 16, pp. 189-206. https://doi.org/10.1002/hyp.343
  3. Blenkinsop, S., and Fowler, H. J. (2007). "Changes in drought frequency, severity and duration for the Britich lsles projected by the PRUDENCE regional climate models." Journal of Hydrology, Vol. 342, No. 1-2. pp. 50-71. https://doi.org/10.1016/j.jhydrol.2007.05.003
  4. Correia, F. N., Santos, M. A., and Rodrigues, R. P. (1991). "Reliability in regional drought studies." Water Resources Engineering Risk Assessment, pp. 63-72.
  5. Dagon, S., Berktay, A., and Singh, V. P. (2012). "Comparison of multimonthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, Turkey." Journal of Hydrology, Vol. 470-417, pp. 255-268.
  6. Du Pisani, C. G., Fouche, H. J., and Venter, J. C. (1998). "Assessing rangeland drought in South Africa." Agricultural Systems, Vol. 57, No. 3, pp. 367-380. https://doi.org/10.1016/S0308-521X(98)00024-9
  7. Edossa, D. S., Babel, M. S., and Gupta, A. D., (2010). "Drought analysis in the awash river Basin, Ethiopia." Water Resour. Manage, Vol. 24, pp. 1441-1460. https://doi.org/10.1007/s11269-009-9508-0
  8. Heim, R. R. (2002). "A review of twentieth-centurydrought indices used in the United States." Bulletin of the American Meteorological Society, Vol. 83, No. 8, pp. 1149-1165. https://doi.org/10.1175/1520-0477-83.8.1149
  9. Jain, V. K., Pandey, R. P., Jain, M. K., and Byun, H. I. (2015). "Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin." Weather and Climate Extremes, Vol. 8, pp. 1-11. https://doi.org/10.1016/j.wace.2015.05.002
  10. Keyantash, J., and Dracup, J. (2002). "The quantification of drought: an evaluation of drought indices." Bulletin of the American Meteorological Society, Vol. 83, No. 8, pp. 1167-1180. https://doi.org/10.1175/1520-0477-83.8.1167
  11. Lee, B. R., Sung, J. H., and Chung, E. S. (2015). "Comparison of meteorological drought and hydrological drought index." Journal of Korea Water Resources Association, Vol. 48, No. 1, pp. 69-78. https://doi.org/10.3741/JKWRA.2015.48.1.69
  12. McKee, T. B., Doeskin, N. J., and Kleist, J. (1993). "Drought monitoring with multiple time scales." Proceeding of 9th Conference on Applied Climatology, American Meteorological Society, pp. 233-236.
  13. Ministry of Land, Infrastructure and Transport (2012). Report of Cheongmicheon river master plan.
  14. Nalbantis, I. (2008). "Evaluation of a hydrological drought index." European Water, Vol. 23, No. 24, pp. 67-77.
  15. Shiau, J. T., and Modarres, R. (2009). "Copula-based drought severityduration-frequency analysis in Iran." Meteorological application, Vol. 16, No. 4, pp. 481-489. https://doi.org/10.1002/met.145
  16. Sorooshian, S., and Gupta, V. (1995). "Chapter 2: Model calibration." Computer Models of Watershed Hydrology, Singh VP, Publications, LLC, Highlands Ranch, CO, pp. 23-68.
  17. Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., and Vogt, J. (2014). "World drought frequency, duration and severity for 1951-2010." International Journal of Climatology, Vol. 34, No. 8, pp. 2792-2804. https://doi.org/10.1002/joc.3875
  18. Sung, J., and Chung, E. S. (2014). "Development of stream drought severity-duration-frequency curves using the threshold level method." Hydrology and Earth System Sciences, Vol. 18, pp. 3341-3351. https://doi.org/10.5194/hess-18-3341-2014
  19. Tate, E. L., and Gustard, A. (2000). "Drought definition: A hydrological perspective." Drought and Drought Mitigation in Europe, Vol. 14, pp. 23-48.
  20. Vicente-Serrano, S. M., Begueria, S., and Lopez-Moreno, J. I. (2010). "A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index." Journal of Climate, Vol. 23, No. 7, pp. 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
  21. Wilhite, D. A., and Glantz, M. H. (1985). "Understanding: the drought phenomenon: The role of definitions." Water International, Vol. 10, No. 3, pp. 111-120. https://doi.org/10.1080/02508068508686328
  22. Won, K. J., and Chung, E. S. (2016). "Drought analysis of Cheongmicheon watershed using meteorological, agricultural, and hydrological drought indices." Journal of Korea Water Resources Association, Vol. 49, No. 6, pp. 509-518. https://doi.org/10.3741/JKWRA.2016.49.6.509
  23. Won, K. J., Chung, E. S., Lee, B. R., and Sung, J. H. (2016). "Characteristics of the han river basin drought using SPEI and RDI." Journal of Korea Water Resources Association, Vol. 49, No. 3, pp. 187-196. https://doi.org/10.3741/JKWRA.2016.49.3.187
  24. Won, K. J., Sung, J. H., and Chung, E. S. (2015). "Parametric assessment of water use vulnerability of South Korea using SWAT model and TOPSIS." Journal of Korea Water Resources Association, Vol. 48, No. 8, pp. 657-657.
  25. Zhao, L., Lyn, A., Wu, J., Hayes, M., Zhenghong, T., and He, B. (2014). "The impact of meteorological drough on streamflow drought in the Jinghe river basin of China." Chinese Geographical Science, Vol. 24, No. 6, pp. 694-705. https://doi.org/10.1007/s11769-014-0726-x