• Title/Summary/Keyword: Standard finite element model

Search Result 273, Processing Time 0.026 seconds

Three Dimensional Finite Element Analysis on ITI Implant Supported Fixed Partial Dentures with Various Fitting Accuracy (적합도에 따른 ITI 임플란트 지지 고정성 국소의치의 삼차원 유한요소 분석)

  • Choi, Min-Ho;Lee, Il-Kwon;Kim, Yu-Ree;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.75-87
    • /
    • 2006
  • The purpose of this study was to investigate the effects of prostheses misfit, cantilever on the stress distribution in the implant components and surrounding bone using three dimensional finite element analysis. Two standard 3-dimensional finite element models were constructed: (1) 3 ITI implant supported, 3-unit fixed partial denture and (2) 3 ITI implant supported, 3-unit fixed partial denture with a distal cantilever. variations of the standard finite element models were made by placing a $100{\mu}m$ or $200{\mu}m$ gap between the fixture, the abutment and the crown on the second premolar and first molar. Total 14 models were constructed. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the distal marginal ridge of the distal molar. von Mises stresses were recorded and compared in the crowns, abutments, crestal compact bones, and trabecular bones. The results were obtained as follows: 1. In the ITI implant system, cement-retained prostheses showed comparatively low stress distributions on all the implant components and fixtures regardless of the misfit sizes under vertical loading. The stresses were increased twice under oblique loading especially in the prostheses with cantilever, but neither showed the effects of misfit size. 2. Under the oblique loading and posterior cantilever, the stresses were highly increased in the crestal bones around ITI implants, but effects of misfit were not shown. Although higher stresses were shown on the apical portion of trabecular bones, the effects by misfit were little and the stresses were increased by the posterior cantilever. 3. When the cement loss happened in the ITI implant supported FPD with misfit, the stresses were increased in the implant componets and supporting structures.

Finite element analysis of helmeted oblique impacts and head injury evaluation with a commercial road helmet

  • Fernandes, Fabio A.O.;de Sousa, R.J. Alves
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.661-679
    • /
    • 2013
  • In this work, the safety performance of a commercial motorcycle helmet already placed on the market is assessed. The assessed motorcycle helmet is currently homologated by several relevant motorcycle standards. Impacts including translational and rotational motions are accurately simulated through a finite element numerical framework. The developed model was validated against experimental results: firstly, a validation concerning the constitutive model for the expanded polystyrene, the material responsible for energy absorption during impact; secondly, a validation regarding the acceleration measured at the headform's centre of gravity during the linear impacts defined in the ECE R22.05 standard. Both were successfully validated. After model validation, an oblique impact was simulated and the results were compared against head injury thresholds in order to predict the resultant head injuries. From this comparison, it was concluded that brain injuries such as concussion and diffuse axonal injury may occur even with a helmet certified by the majority of the motorcycle helmet standards. Unfortunately, these standards currently do not contemplate rotational components of acceleration. Conclusion points out to a strong recommendation on the necessity of including rotational motion in forthcoming motorcycle helmet standards and improving the current test procedures and head injury criteria used by the standards, to improve the safety between the motorcyclists.

Material modeling of steel fiber reinforced concrete

  • Thomee, B.;Schikora, K.;Bletzinger, K.U.
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.197-212
    • /
    • 2006
  • Modeling of physically non-linear behavior becomes more and more important for the analysis of SFRC structures in practical applications. From this point of view we will present an effective, three-dimensional constitutive model for SFRC, that is also easy to implement in commercial finite element programs. Additionally, the finite element analysis should only require standard material parameters which can be gained easily from conventional experiments or which are specified in appropriate building codes. Another important point is attaining the material parameters from experimental data. The procedures to determine the material parameters proposed in appropriate codes seem to be only approximations and are unsuitable for precise structural analysis. Therefore a finite element analysis of the test itself is used to get the material parameters. This process is also denoted as inverse analysis. The efficiency of the proposed constitutive model is demonstrated on the basis of numerical examples and their comparison to experimental results. In the framework of material parameter identification the idea of a new, indirect tension testing procedure, the "Modified Tension Test", is adopted and extended to an easy-to-carry-out tension test for steel fiber reinforced concrete specimens.

A study on Structure Analysis about Twin Lift Telescopic Spreader (트윈 리프트용 신축 스프레다 유니트의 구조해석에 관한 연구)

  • Lee, Sang-Hoon;Jeong, Il-Jung;Kim, Dong-Eun;Lee, Seok-Soon;Shin, Shang-Woon;Han, Goog-Nam;Kim, Min-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.660-665
    • /
    • 2007
  • This Study is a structure analysis about twin lift telescopic Spreader that usually loading and unloading a container in harbor. Applied load is assumed by lifting 65tons that is the maximum weight of real container. The finite element analysis for 3D model is performed by ABAQUS/Standard. We made an estimate of safety by evaluating the results of the finite element analysis.

  • PDF

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.

Static Strength Analysis and Safety Evaluation for Developing a Round Recliner (라운드 리클라이너 개발을 위한 정적 강도 해석 및 안전성 평가)

  • Jeong, Yoon-Goo;Lim, Jea-Kyu;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.23-28
    • /
    • 2004
  • Seat is one of the most important part of an automobile for passenger's safety especially when an accident happens. A recliner is a part of the seat assembly, having the function of adjusting the back-plate angle of a seat. Recently, many kinds of vehicles have adopted the round recliner module rather than the conventional types of recliners because of its broad compatibility and structural simplicity. In this study a two-dimensional finite element strength analysis has been performed using a commercial code ABAQUS/Standard for the purpose of developing a new round recliner model. The loading condition for the analysis is the same as the FMVSS 301 regulation. The finite element result for the round recliner has been compared with that for the conventional type.

  • PDF

Finite Element Analysis for the Landing Impact Evaluation of Court Sport Shoes (코트 스포츠화의 착지충격 평가를 위한 유한요소 해석)

  • Kim, Seong-Ho;Cho, Jin-Rae;Ryu, Sung-Heon;Choi, Joo-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.438-443
    • /
    • 2004
  • Court sport shoes is consisted of several functional parts such as soles, upper and midfoot reinforcements. Currently, intensive research for court sport shoes considering functional parts is in progress world widely, but the shoes design relies only on the view point of kinesilogy and biomechanics until now. Thus, more scientific and reliable evaluation of shoes characteristics is definitely required. In this paper, we evaluate the landing impact of court sport shoes by using finite element method. We construct a shoes-leg coupled FEM model which can simulate effectively impact in running mode. From the numerical analysis results, the designer can establish the advanced design concepts and build up the detailed design standard for the specific court sport shoes under consideration.

  • PDF

Child Occupant Safety According to the ISOFIX Type of CRS (CRS의 부착방식에 따른 어린이 탑승자 안전도 비교)

  • 이재완;윤영한;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.86-93
    • /
    • 2003
  • These days, automobile industry pays considerable attention to child occupant safety. As the US adopted requirements for universal and uniform anchor systems for child restraints, manufacturers for child seats put an enormous effort to improve the protective properties of Child Restraint System (CRS). Various standards have been studied and announced by different countries. The anchorage system is the most important in the CRS and the rules of universal anchor are to provide devices which are independent of safety belts. A new concept called International Standard Organization Fixture (ISOFIX) has been announced. It suggests some designs for the CRS. In this study, the suggested designs are evaluated with domestic products. Tests are performed and the results are incorporated into a finite element modeling process. As the finite element model is established, various numerical tests are conducted and the numerical results are discussed. A commercial software system is utilized for the nonlinear finite element analysis.

Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)

  • Ahangarnazhad, Bita Hosseinian;Pourbaba, Masoud;Afkar, Amir
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.463-474
    • /
    • 2020
  • In this paper, the influence of adding multi-walled carbon nanotube (MWCNT) on the pull behavior of steel and GFRP bars in ultra-high-performance concrete (UHPC) was examined experimentally and numerically. For numerical analysis, 3D nonlinear finite element modeling (FEM) with the help of ABAQUS software was used. Mechanical properties of the specimens, including Young's modulus, tensile strength and compressive strength, were extracted from the experimental results of the tests performed on standard cube specimens and for different values of weight percent of MWCNTs. In order to consider more realistic assumptions, the bond between concrete and bar was simulated using adhesive surfaces and Cohesive Zone Model (CZM), whose parameters were obtained by calibrating the results of the finite element model with the experimental results of pullout tests. The accuracy of the results of the finite element model was proved with conducting the pullout experimental test which showed high accuracy of the proposed model. Then, the effect of different parameters such as the material of bar, the diameter of the bar, as well as the weight percent of MWCNT on the bond behavior of bar and UHPC were studied. The results suggest that modifying UHPC with MWCNT improves bond strength between concrete and bar. In MWCNT per 0.01 and 0.3 wt% of MWCNT, the maximum pullout strength of steel bar with a diameter of 16 mm increased by 52.5% and 58.7% compared to the control specimen (UHPC without nanoparticle). Also, this increase in GFRP bars with a diameter of 16 mm was 34.3% and 45%.

Thermoelastic Contact Analysis of Drums Brakes by Finite Element Method (유한요소법에 의한 드럼 브레이크의 열탄성 접촉해석)

  • 구병춘;서정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.173-180
    • /
    • 2001
  • In the case of axisymmetric thermal analysis of drum brakes, the distribution of frictional heat produced on the interface and temperature difference between mating frictional faces are very interesting problems to computational researchers. In the first part, the influence of the s-cam load angles and elastic modulus of the pad on the contact pressure distribution between pad and drum was checked by a three dimensional model. In the second part heat conduction from the interface to the pad and the drum was modeled by using a thin interface element, so artificial division of the generated frictional heat between pad and drum is not necessary. Temperature difference between mating frictional faces is successfully modeled by using the interface element. The influence of some parameters on the thermal distribution is checked. The analysis was performed by ABAQUS/Standard code.

  • PDF