• Title/Summary/Keyword: Standard Reference Material

Search Result 238, Processing Time 0.031 seconds

A Study on the Development of Soil-based PTMs for Analysis of Benzo[a]pyrene - Focusing on the Evaluation of Homogeneity and Stability for the Certification of Benzo[a]pyrenecandidate Reference Materials - (Benzo[a]pyrene 분석용 토양 숙련도 표준시료 개발에 관한 연구 - 후보 표준물질의 인증을 위한 균질성, 안정성 평가를 중심으로 -)

  • Lee, Minhyo;Lee, Guntaek;Joo, Changkyu;Kim, Yonghun;Lee, Bupyoel;Choe, Sunghun;Kim, Myeongock;Hong, Sukyoung;Kim, Gumhee;Lee, Wonseok
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.49-58
    • /
    • 2014
  • This study was implemented as a part of the experiment to develop two kinds of soil-based Benzo[a]pyrene (BaP) proficiency testing materials (PTMs) for soil analysis. A test was carried out for the check of solubility of the reference material (high purity reagent) using several solvents. Another test was also conducted for the evaluation of homogeneity and stability of two kinds of candidate soil reference materials. The test analysis of BaP in terms of the candidate materials was conducted according to the Standard Soil Analytical Methods by Ministry of Environment. Dissolution of the reference material was shown to vary depending on solvent type and was higher in the order of Dichloromethane > Acetone > Acetone/MeOH (9 : 1) > N-hexane. In addition, the slope on calibration curve for BaP standard solutions was largest on BaP standard solutions prepared with dichloromethane of the tested solvents. Such tendency appeared egually in the commercial BaP standard solution. Therefore, it is thought to be reasonable to use dichloromethane as the solvent in case of the standard stock solution that is used for the measurement of BaP concentration in soil. ISO 13528 and IUPAC protocol were used for verification of homogeneity on the two kinds of soil candidate materials, Both candidate materials were sufficiently homogeneous. Stability assessment of the two candidate materials was made according to ISO Guide 35 and the result showed that both batches did not have any long-term and short term stability issues that might occur during shipping. However, monitoring results of BaP concentration in soil showed that BaP concentration of the two batches measured at 15 days after the sample preparation was reduced by about 24~37% compared with that of the samples measured on 0 day of the sample preparation. Identification was done with several treatments such as irradiation and sterilization etc. The major cause was shown to be irradiation to the samples.

Intercomparison and Determination of Trace Elements in Urban Dust by Neutron Activation Analysis (중성자방사화분석법을 이용한 대기분진중의 미량원소 비교분석)

  • Chung, Yong-Sam;Moon, Jong-Hwa;Kim, Sun-Ha;Park, Kwang-Won;Kang, Sang-Hun
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.179-188
    • /
    • 2000
  • Trace elements in air samples artificially loaded on filters with urban dust and the bulk material of urban dust as an environmental sample were determined non-destructively using instrumental neutron activation analysis. Standard reference material (Urban Dust, SRM 1648) of the National Institute of Standard and Technology was used for the analytical quality control. The relative error for 37 elements was less than 15% and the standard deviation was less than 10%. 29 elements in the urban dust and 21 elements in the loaded filter sample were determined respectively. To evaluate the proficiency and reliability of the measurement, data intercomparison was performed and 39 analytical laboratories participated in the analysis using different analytical methods; neutron activation analysis, particle induced X-ray emission analysis, X-ray fluorescence analysis and atomic absorption spectrometry. Z-scores were calculated using the standard deviation of the laboratorie's mean as target standard deviation, and a good result was obtained that the values fall between -1 and +1 except some elements.

  • PDF

Development of Certified Reference Materials for Specific Surface Area (비표면적 인증표준물질 개발)

  • Choi, Byung Il;Kim, Jong Chul;Kim, Taeyoung;Nham, Hyunsoo;Kwon, Su Yong
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.74-84
    • /
    • 2005
  • Understandings of adsorption characteristic of interface are very important in several advanced materials processes, related to NT and BT technology. Volumetric gas adsorption method, suitable for absolute measurements, is regarded as the standardized measurement technique for specific surface area. In order to verify the reliability of commercial equipments, certified reference materials (called CRM) of specific surface area are developed and evaluated its uncertainty factors by standard equipment which has traceability to SI units. Specific surface areas of developed materials are $10.72{\pm}0.46m^2g^{-1}$ for silicon nitride powders and $149.50{\pm}3.44m^2g^{-1}$ for alumina. These disseminations of CRMs would result in improved reliability chains in industrial processes, and lead eventually to contribution to productivity improvement, quality management, safety evaluation, and possibly to new material development.

Characterizing a Full Spectrum of Physico-Chemical Properties of Ginsenosides Rb1 and Rg1 to Be Proposed as Standard Reference Materials

  • Kim, Il-Woung;Hong, Hee-Do;Choi, Sang-Yoon;Hwang, Da-Hye;Her, Youl;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.35 no.4
    • /
    • pp.487-496
    • /
    • 2011
  • Good manufacturing practice (GMP)-based quality control is an integral component of the common technical document, a formal documentation process for applying a marketing authorization holder to those countries where ginseng is classified as a medicine. In addition, authentication of the physico-chemical properties of ginsenoside reference materials, and qualitative and quantitative batch analytical data based on validated analytical procedures are prerequisites for certifying GMP. Therefore, the aim of this study was to propose an authentication process for isolated ginsenosides $Rb_1$ and $Rg_1$ as reference materials (RM) and for these compounds to be designated as RMs for ginseng preparations throughout the world. Ginsenoside $Rb_1$ and $Rg_1$ were isolated by Diaion HP-20 adsorption chromatography, silica gel flash chromatography, recrystallization, and preparative HPLC. HPLC fractions corresponding to those two ginsenosides were recrystallized in appropriate solvents for the analysis of physico-chemical properties. Documentation of the isolated ginsenosides was made according to the method proposed by Gaedcke and Steinhoff. The ginsenosides were subjected to analyses of their general characteristics, identification, purity, content quantitation, and mass balance tests. The isolated ginsenosides were proven to be a single compound when analyzed by three different HPLC systems. Also, the water content was found to be 0.940% for $Rb_1$ and 0.485% for $Rg_1$, meaning that the net mass balance for ginsenoside $Rb_1$ and $Rg_1$ were 99.060% and 99.515%, respectively. From these results, we could assess and propose a full spectrum of physicochemical properties for the ginsenosides $Rb_1$ and $Rg_1$ as standard reference materials for GMP-based quality control.

Development of a Mushroom Powder Certified Reference Material for Element Analysis

  • Betru, Tegegn Gizachew;Yim, Yong-Hyeon;Lee, Kyoung-Seok
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.108-112
    • /
    • 2020
  • A certified reference material (CRM) for the analysis of nutrient elements in an edible mushroom (Ganoderma lyceum) powder has been developed (KRISS CRM 108-10-011). The mass fractions of calcium (Ca), iron (Fe), and zinc (Zn) were measured by isotope dilution inductively coupled plasma mass spectrometry (ID ICP/MS). To dissolve the fungi cell wall of mushroom consisted of chitin fibers, sample preparation method by single reaction chamber type microwave-assisted acid digestion with acid mixtures was optimized. The mean measurement results obtained from 12 sample bottles were used to assign as the certified values for the CRM and the between-bottle homogeneities were evaluated from the relative standard deviations. The certified values were metrologically traceable to the definition of the kilogram in the International System of Units (SI). This CRM is expected to be used for validation of analytical methods or quality control of measurement results in analytical laboratories when they determine the mass fractions of elements in mushroom or other similar samples.

A Study on the Standard Joint Material and Reference Plane for the Standard of Construction in the Apartment (공동주택 시공표준화를 위한 조립기준면 및 표준마무리재에 관한 연구)

  • Lim, Seok-Ho;Park, Keun-Soo;Lee, Ga-Kyung
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.230-235
    • /
    • 2009
  • In our country, the application of the design method of face to face dimension in wall-slab apartment has passed 10 years. So MC design method has fixed in the design step to some degree. In Design and Work Execution of House the exclusive area of the apartment was calculated by face to face dimension. And the term of face to face dimension was known broadly to clients, construction company, etc. But design method of face to face dimension is not to simply extend the room size so far as wall depth in design process but to ensure the actual space should be considered with efficient use and assembly of building components. That is to say, Design method of face to face dimension is not to be defined by design step but to be related with construction and maintenance. However in construction process the point of face to face design method was not understood even now. So the purpose of this study was to extract the effect and question of face to face design method in construction process by survey of actual condition of structure and construction quality, and compare this result with existing construction method. The following project of this study is to survey of actual condition of interior components such as gypsum board, windows & doors etc. Therefore this study is to induce architectural long-life through architectural standardization construction and component's exchange, and, by the subject of the study on Apartment to have design guideline and basis for joining part between Gypsumboard and windows.

  • PDF

Ultrasonic Test Criterion for the Explosively Welded Fe-Naval Brass Bonding Quality (초음파법에 의한 폭발접합 이종금속 접합품질 판정레벨 설정에 관한 연구)

  • 장영권;백영남
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.40-48
    • /
    • 2001
  • An ultrasonic test method, as a nondestructive test is applied to ensure the clad interface quality assessment. According to the reference codes and standards, not only korea Industrial Standard(KS) but also American Society for Testing and Materials (ASTM) Standard, ultrasonic examination procedures use the pulse-echo, A-scan, back reflection signal drop method and/or side drilled reference hole used to establish the acceptance criteria of clad material test. But the variety of bonding materials and sizes makes it difficult to produce the reference blocks, or thus the criteria. In order to overcome these practical difficulties, new ultrasonic testing criterion is suggested. In this new method, the theoretical interface reflection signal amplitude level is calculated and suggested as an acceptance criteria with the back reflection signal set to 100% FSH(Full Screen Height) which is based on acoustic impedance mismatch at the clad interface for the explosive clad ultrasonic inspection. Applicability of suggested criterion, for the explosive clad Fe-Naval Brass with different bonding quality is confirmed to the pre-existed KS and ASTM specifications and verified by using SEM (Seanning Electron Microscope) micrograph. The results obtained by the suggested method is more conservative than the results according to the KS B 0234 and ASTM A 578 specifications The suggested method could be applicable to any other combination of explosive clad ultrasonic inspection.

  • PDF

Multielement Analysis in Airborne Particulate Matter $(PM_{10})$ by INAA, ICP and AAS (INAA.ICP.AAS를 이용한 대기먼지 $(PM_{10})$의 다원소분석)

  • 정용삼;문종화;정영주;박광원;이길용;윤윤열;심상권;조경행;한명섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.495-503
    • /
    • 1999
  • Airborne particulate matter $(PM_{10})$ collected using high volume air sampler and silica fiber filter were analyzed by Instrumental Neutron Activation Analysis(INAA), Inductively Coupled Plasma Atomic Emission Spectrometry(ICP-AES) and Atomic Absorption Spectrometry(AAS), and the results were compared with each other. 30~40 trace elements in environmental standard reference materials(NIST SRM 1648 and NIES CRM No.8) were analyzed for the analytical quality control. The relative error for two-third of elements detected was less than 10%, and the standard deviation was less than 15%. During the sampling period for 24 hours, the mass concentration of total suspended particulate was 36.1$\mu\textrm{g}$/㎥ and the value is lower than the critical level in Korea. In the results of NAA, the elements of Al, As, Ba, Fe, La, Mg, Na, Sb, Zn were well agreed with those of other methods. In statistical estimation between different methods, the deviation of Al, Ba, Cr, Fe was less than 10% and quite reliable.

  • PDF

Ballistic Match Analysis for 5.56 MM Bullet with New Copper Core Material (5.56밀리 소화기탄 탄자 코어 재질 변경에 따른 동심탄의 탄도호환성 분석)

  • Ko, Yongsin;Park, Yongdeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.712-720
    • /
    • 2016
  • The purpose of this study was to inspect ballistic match of copper bullet at 4 points by analyzing vertical deviation about shot group of the 5.56 mm common bullets and copper bullets. The 5.56 mm bullet with new copper core material was developed for mitigation of environmental pollution and harmfulness to human body. The results of this study are as follows; using the regression analysis, estimated reference value of ballistic match were 51.6 mm, 64.9 mm, 87.3 mm and 99.6 mm at 25 m, 100 m, 200 m and 250 m range respectively. When analyzing the shooting test data, alternative hypothesis(The vertical deviations are less than the reference value) was adopted as the result of analyzing data using t-test. And the values of data through tool(PRODAS) and standard trajectory equation meet requirements of estimated ballistic match respectively. In conclusion, the level of ballistic match of 5.56 mm copper bullets meets the estimated reference level through regression analysis at 4 points.

Evaluation of Fracture Toughness for SA508 Gr. 3 Reactor Pressure Vessel Steel Using Bimodal Master Curve Approach (이봉분포 마스터커브를 이용한 SA508 Gr. 3 원자로용기강의 파괴인성 평가)

  • Kim, Jong Min;Kim, Min Chul;Lee, Bong Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.60-66
    • /
    • 2017
  • The standard master curve (MC) approach has the major limitation because it is only applicable to homogeneous datasets. In nature, materials are macroscopically inhomogeneous and involve scatter of fracture toughness data due to various deterministic material inhomogeneity and random inhomogeneity. RPV(reactor pressure vessel) steel has different fracture toughness with varying distance from the inner surface of the wall due to cooling rate in manufacturing process; deterministic inhomogeneity. On the other hand, reference temperature, $T_0$, used in the evaluation of fracture toughness is acting as a random parameter in the evaluation of welding region; random inhomogeneity. In the present paper, four regions, the surface, 1/8T, 1/4T and 1/2T, were considered for fracture toughness specimens of KSNP (Korean Standard Nuclear Plant) SA508 Gr. 3 steel to investigate deterministic material inhomogeneity and random inhomogeneity. Fracture toughness tests were carried out for four regions and three test temperatures in the transition region. Fracture toughness evaluation was performed using the bimodal master curve (BMC) approach which is applicable to the inhomogeneous material. The results of the bimodal master curve analyses were compared with that of conventional master curve analyses. As a result, the bimodal master approach considering inhomogeneous materials provides better description of scatter in fracture toughness data than conventional master curve analysis. However, the difference in the $T_0$ determined by two master curve approaches was insignificant.