• Title/Summary/Keyword: Standard Measuring Technology

Search Result 389, Processing Time 0.024 seconds

Ne-Ne 레이저의 간섭을 이용한 고정밀 리니어 스케일의 제작에 관한 연구

  • 전병욱;박두원;이명호;한응교
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.176-194
    • /
    • 1991
  • A study on the Manufactiring of High-Precision Linear Scale by the Use of He-Ne Laser Interference Of late, along with the advancement of procision machining technology, the reauirement of super-precision measurement increases as time goes on, and the precision and accuracy of standard scale which is a basis of procision measurement has been cognized as a oriterion of industrial development in a nation. Up to now, mechanical and chemical methods have been widely employed to carve scale lines on linear scale, and it is impossible for the linear scale manufactured by means of those methods to guarantee the measurement with sub-micron level owing to errors attended with various problems. And the measuring length also bears errors subjected to the influence of surroundings condition, and shows inefficient circumstances in measurement on the ground of the complexity of measuring procedure as well as massive measuring apparatus. Hence in this paper, we described on technology by which we can carve scale lines thru optical method under the condition of laboratory by using rhcoherence of He-Ne two-mode stabilized laser and in turn, put it to practical use as linear scale for the measurment of lengrh. In this researchin the case of setting scale interval to 20 .mu. m, we employed super-precision scale-carving device associated by Ar larser and acoustic optical modulator in lieu of flsahing lamp scale-carving device, and we consequently obtained superior linear scales carved with precision and accuracy of .+-. 0.3 .mu. m.

Acquisition Model for 3D Shape Measurement Data

  • Park, Jong-Sik;Jang, Wang-Jin;Lee, Seong-Beom;Park, Chan-Seok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2008
  • The demand for three-dimensional (3D) shape measurements is increasing in a variety of fields, including the manufacture of molds and dies. The most popular technology for 3D shape measurement is the coordinate measuring machine (CMM) with a contact trigger probe. Although a CMM provides a high degree of accuracy, it is inefficient due to its long measuring time. It also has difficulty measuring soft objects that can be deformed by the touch of the contact probe. In addition, a CMM cannot digitize areas that are difficult to reach, and cannot capture very minute details on the surface of complex parts. For these reasons, optical non-contact measurement techniques are receiving more attention since they eliminate most of the problems associated with contact methods. Laser scanning is emerging as one of the more promising non-contact measurement techniques. This paper describes various acquisition considerations for laser scanning, including the accuracy of the 3D scan data, which depends on the charge-coupled device (CCD) gain and noise. The CCD gain and noise of a 3D laser scanner are varied while keeping the other conditions constant, and the measurement results are compared to the dimensions of a standard model. The experimental results show that a considerable time savings and an optimum degree of accuracy are possible by selecting the proper CCD gain and noise.

Mobile Cloud System based on EMRA for Inbody Data

  • Lee, Jong-Sub;Moon, Seok-Jae
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.327-333
    • /
    • 2021
  • Inbody is a tool for measuring health information with high reliability and accuracy to analyze body composition. Unlike the existing method of storing/processing and outputting data on the server side, the health information generated by InBody requires accurate support for health sharing and data analysis services using mobile devices. However, in the process of transmitting body composition measurement information to a mobile service, a problem may occur in data transmission/reception processing. The reason for this is that, since the network network in the cloud environment is used, if the connection is cut off or the connection is changed, it is necessary to provide a global service, not a temporary area, focusing on the mobility of InBody information. In addition, since InBody information is transmitted to mobile devices, a standard schema should be defined in the mobile cloud environment to enable information transfer between standardized InBody data and mobile devices. We propose a mobile cloud system using EMRA(Extended Metadata Registry Access) in which a mobile device processes and transmits body data generated in the inbody and manages the data of each local organization with a standard schema. The proposed system processes the data generated in InBody and converts it into a standard schema using EMRA so that standardized data can be transmitted. In addition, even when the mobile device moves through the area, the coordinator subsystem is in charge of providing access services. In addition, EMRA is applied to the collision problem due to schema heterogeneity occurring in the process of accessing data generated in InBody.

Measurement of Liquid Density using Tuning Fork (튜닝포크를 이용한 액체밀도의 계측)

  • Kim, Choong-Hyun;Lee, Yong-Bok;Lee, Sung-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.86-91
    • /
    • 2007
  • A sensor using quartz toning fork is presented for measuring liquid density. It consists of a PZT plate as an actuator for piezoelectric excitation and a quartz tuning fork as a sensor for resonant frequency detection. The resonant frequency is determined from the sensing voltage measured in tuning fork when the excitation frequencies of PZT actuator are swept around the resonant frequencies of tuning fork. The resonant frequency determined the liquid density. The density values of three kinds of organic solvents are measured and compared with the standard values. The experimental results are in agreement with the standard values and the maximum standard deviation is less than 9%.

A Dynamic Calibration Technique for Piezoelectric Sensors Using Negative Going Dynamic Pressure (부방향 동압력을 이용한 압전형 압력센서의 교정기법)

  • Kim, Eung-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.491-499
    • /
    • 2009
  • The determination of response characteristics for pressure sensors is routinely limited to static calibration against a deadweight pressure standard. The strength of this method is that the deadweight device is a primary standard used to generate precise pressure. Its weakness lies in the assumption that the static and dynamic responses of the sensor in question are equivalent. Differences in sensor response to static and dynamic events, however, can lead to serious measurement errors. Dynamic techniques are required to calibrate pressure sensors measuring dynamic events in milliseconds. In this paper, a dynamic calibration using negative going dynamic pressure is proposed to determine dynamic pressure response for piezoelectric sensors. Sensitivity and linearity of sensor by the dynamic calibration were compared with those by the static calibration. The uncertainty of calibration results and the goodness of fit test of linear regression analysis were presented. The results show that the dynamic calibration is applicable to determine dynamic pressure response for piezoelectric sensors.

Noninvasive Hematocrit Monitoring Based on Parameter-optimization of a LED Finger Probe

  • Yoon, Gil-Won;Jeon, Kye-Jin
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.107-110
    • /
    • 2005
  • An optical method of measuring hematocrit noninvasively is presented. An LED Light with multiple wavelengths was irradiated on fingernail and transmitted light from the finger was measured to predict hematocrit. A finger probe contained an LED array and detector. Our previous experience showed that prediction accuracy was sensitive to reliability of the finger probe hardware and we optimized the finger probe parameters such as the internal color, detector area and the emission area of a light source based on Design of Experiment. Using the optimized finger probe, we developed a hematocrit monitoring system and tested with 549 persons. For the calibration model with 368 persons, a regression coefficient of 0.74 and a standard deviation of 3.67 and the mean percent error of $8\%$ were obtained. Hematocrits for 181 persons were predicted. We achieved a mean percent error of $8.2\%$ where the regression coefficient was 0.68 and the standard deviation was 3.69.

Accuracy evaluation of diagnostic parameters estimated by uroflowmetry technique measuring hydraulic pressure (수압측정 방식의 요류검사 진단매개변수의 정확도 평가)

  • Kim, Kyung-Ah;Choi, Seong-Su;Kim, Sung-Sik;Kim, Kun-Jin;Park, Kyung-Soon;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.413-418
    • /
    • 2007
  • Uroflowmetry is of great convenience to diagnose benign prostate hypertrophy common in aged men. The urinary flow rate is obtained by weight measurement using load cell, however, sensitive to impact noise. An alternative technique was recently proposed to measure hydraulic pressure instead of weight and demonstrated to introduce significantly reduced noise. In this paper, we described the measured diagnostic parameters between the weight and pressure measuring techniques in 10 normal men. The weight and pressure signals were simultaneously acquired during urination, converted into urine volumes, then differentiated to obtain flow rate signals, which showed very similar waveforms. Diagnostic parameters evaluated by pressure measuring technique were well correlated with the standard weight measuring technique (correlation coefficient > 0.99). Therefore, the new uroflowmetry based on hydraulic pressure measurement can provide accurate diagnostic parameters, which would be clinically valid.

3-Dimensional Shape Measurement System for BGA Balls Using PMP Method (PMP 방식을 이용한 BGA 볼의 3차원 형상측정 시스템)

  • Kim, Hyo Jun;Kim, Joon Seek;Joo, Hyonam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • As modern electronic devices get smaller and smaller, high-resolution, large Field-Of-View (FOV), fast, and cost-effective 3-dimensional (3-D) measurement is requested more and more. In particular, defect inspection machines using machine-vision technology nowadays require 3-D inspection as well as the conventional 2-D inspection. Phase Measuring Profilometry (PMP) is one of the fast non-contact 3-D shape measuring methods currently being extensively investigated in the electronic component manufacturing industry. The PMP system is well known and is successfully applied to measuring complex surface profiles with varying reflectance properties. However, for highly reflective surfaces, such as Ball Grid Arrays (BGAs), it has difficulty accurately measuring 3-D shapes. In this paper, we propose a new fast optical system that can eliminate the highly reflective saturated regions in BGA ball images. This is achieved by utilizing four Low Intensity Grating (LIG) images together with the conventional High Intensity Grating (HIG) images. Extensive experiments using BGA samples show a repeatability of under ${\pm}20um$ in standard deviation, which is suitable for most 3-D shape measurements of BGAs.

Results of round robin test for specific surface area (비표면적 순회평가 결과)

  • Choi, Byung-Il;Kim, Jong-Chul;Woo, Sang-Bong
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.503-509
    • /
    • 2011
  • Specific surface area is becoming a very important factor when newly developed advanced nano-materials are evaluated. But there have been many differences in results when measuring specific surface areas, depending on the measuring equipments and analysis method. To verify the reliability of the specific surface area measurement device supplied within the country, Round Robin Test (RRT) has been done at 21 affiliated research institutes. As a result, it was found that several institute had problems in measuring of gas adsorption amount in measuring equipment, and this proved the need for certified reference material (CRM). Furthermore, it was also found that the results from BET analysis is easily swayed by the analyst's subjectivism, and the calculated results may differ up to 16% in case of CRM I depending on the selection range of BET analysis. So this showed that a standard guideline for BET constant C value and fitting correlation coefficient R is needed, to properly select range in BET analysis. The experience in RRT, distribution of CRM, and standardized procedure would result in improved reliability in industrial processes, and thus, would contribute to the quality management, the productivity improvement, the safety evaluation, and the new material development.

A Study on the Development and Application of Performance Evaluation Model for Defense Standard Improvement Projects (국방규격 개선사업의 성과평가모형 개발 및 적용방안 연구)

  • Lee, Min Cheol;Kim, Young Hyun;Ahn, Young Jun;Kim, Jun Su
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.185-202
    • /
    • 2023
  • Purpose: The purpose of this study is to identify key performance evaluation items and factors that are effective and practical for project management of defense standard standard improvement projects, and to develop a quantitative performance evaluation model. Methods: For the development of a performance evaluation model for defense standard improvement projects, we analyzed past major project performance and derived evaluation items and factors. To increase the objectivity and efficiency of project evaluation, we developed an evaluation index that enables relative evaluation of evaluation targets, and calculated the main importance of evaluation items using the Analytic Hierarchy Process (AHP) method based on the main opinions of expert groups. Results: The study resulted in the identification of main performance items for defense standard improvement projects, which were classified into defense standard conformity review performance and defense standard improvement performance items. We also simplified the evaluation model by integrating various evaluation items into similar evaluation factors. Additionally, we developed a quantitative evaluation index that enables relative evaluation of the targets and verified the objectivity and validity of the suggested performance evaluation model by reevaluating it using performance data from past commissioned professional institutions Conclusion: Developing a quantitative evaluation model for defense standard improvement projects is expected to provide a means of measuring the effectiveness of the project, and to be used as a tool to determine the appropriateness and effectiveness of medium and long-term project plans.