• Title/Summary/Keyword: Standard K-$\varepsilon$model

Search Result 239, Processing Time 0.024 seconds

Numerical analysis of continuous casting process with electromagnetic brake (연속주조공정에서의 EMBR의 수치해석)

  • 김현경;유흥선;유수열
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.766-773
    • /
    • 1999
  • A numerical analysis has been performed solidification problem using the fixed grid-enthalpy method with enthalpy-porosity relation. A modified standard $k-\varepsilon$ model was applied to describe the influence of turbulent flow. Computational procedures are based on the finite volume method and the non-staggered grid system. Comparisons with the different three experimental results show that applying a modified standard $k-\varepsilon$model in mushyzone is better than the previous computation results. This paper includes another EMBR's influences such as change of velocity field, Increasement of temperature and dispersion of flow out of nozzle into the flow field. These EMBR's influences are compared to case without EMBR.

  • PDF

A STUDY ON THE IMPROVEMENT OF κ-εTURBULENCE MODEL FOR PREDICTION OF THE RECIRCULATION FLOW (재순환유동 예측을 위한 κ-ε 난류모델 개선에 대한 연구)

  • Lee, Y.M.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.12-24
    • /
    • 2016
  • The standard ${\kappa}-{\varepsilon}$ and realizable ${\kappa}-{\varepsilon}$ models are adopted to improve the prediction performance on the recirculating flow. In this paper, the backward facing step flows are used to assess the prediction performance of the recirculation zone. The model constants of turbulence model are obtained by the experimental results and they have a different value according to the flow. In the case of an isotropic flow situation, decaying of turbulent kinetic energy should follow a power law behavior. In accordance with the power law, the coefficients for the dissipation rate of turbulent kinetic energy are not universal. Also, the other coefficients as well as the dissipation coefficient are not constant. As a result, a suitable coefficients can be varied according to each of the flow. The changes of flow over the backward facing step in accordance with model constants of the ${\kappa}-{\varepsilon}$ models show that the reattachment length is dependent on the growth rate(${\lambda}$) and the ${\kappa}-{\varepsilon}$ models can be improved the prediction performance by changing the model constants about the recirculating flow. In addition, it was investigated for the curvature correction effect of the ${\kappa}-{\varepsilon}$ models in the recirculating flow. Overall, the curvature corrected ${\kappa}-{\varepsilon}$ models showed an excellent prediction performance.

Pressure distribution on rectangular buildings with changes in aspect ratio and wind direction

  • Lee, Young Tae;Boo, Soo Ii;Lim, Hee Chang;Misutani, Kunio
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.465-483
    • /
    • 2016
  • This study aims to enhance the understanding of the surface pressure distribution around rectangular bodies, by considering aspects such as the suction pressure at the leading edge on the top and side faces when the body aspect ratio and wind direction are changed. We carried out wind tunnel measurements and numerical simulations of flow around a series of rectangular bodies (a cube and two rectangular bodies) that were placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equations with the typical two-equation model (i.e., the standard $k-{\varepsilon}$ model) were solved, and the results were compared with the wind tunnel measurement data. Regarding the turbulence model, the results of the $k-{\varepsilon}$ model are in overall agreement with the experimental results, including the existing data. However, because of the blockage effects in the computational domain, the pressure recovery region is underpredicted compared to the experimental data. In addition, the $k-{\varepsilon}$ model sometimes will fail to capture the exact flow features. The primary emphasis in this study is on the flow characteristics around rectangular bodies with various aspect ratios and approaching wind directions. The aspect ratio and wind direction influence the type of wake that is generated and ultimately the structural loading and pressure, and in particular, the structural excitation. The results show that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and side faces of the cube. In addition, the transverse width has a substantial effect on the variations in surface pressure around the bodies, while the longitudinal length has less influence compared to the transverse width.

Prediction of Jet Impingement Heat Transfer on a Cylindrical Pedestal (원형블록이 있는 벽면충돌제트 열전달 해석)

  • Park, Tae-Seon;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.141-149
    • /
    • 2002
  • A numerical simulation is performed for the cooling heat transfer of a heated cylindrical pedestal by an axisymmetric jet impingement. Based on the k- $\varepsilon$- f$\sub$${\mu}$/ model of Park et at., the linear and nonlinear stress-strain relations are extended. The Reynolds number based on the jet diameter(D) is fixed at Re$\sub$D/ = 23000. The local heat transfer coefficients are compared with available experimental data. The predictions by k- $\varepsilon$-f$\sub$${\mu}$/ model are in good agreement with the experiments, whereas the standard 7- f model does not properly resolve the flow structures.

Estimating Regression Function with $\varepsilon-Insensitive$ Supervised Learning Algorithm

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.477-483
    • /
    • 2004
  • One of the major paradigms for supervised learning in neural network community is back-propagation learning. The standard implementations of back-propagation learning are optimal under the assumptions of identical and independent Gaussian noise. In this paper, for regression function estimation, we introduce $\varepsilon-insensitive$ back-propagation learning algorithm, which corresponds to minimizing the least absolute error. We compare this algorithm with support vector machine(SVM), which is another $\varepsilon-insensitive$ supervised learning algorithm and has been very successful in pattern recognition and function estimation problems. For comparison, we consider a more realistic model would allow the noise variance itself to depend on the input variables.

  • PDF

ASSESSMENT OF CORE BYPASS FLOW IN A PRISMATIC VERY HIGH TEMPERATURE REACTOR BY USING UNIT-CELL EXPERIMENT AND CFD ANALYSIS (단위-셀 실험과 전산유체해석을 통한 블록형 초고온가스로의 노심우회유량 평가)

  • Yoon, S.J.;Jin, C.Y.;Kim, M.H.;Park, G.C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • An accurate prediction of the bypass flow is of great importance in the VHTR core design concerning the fuel thermal margin. Nevertheless, there has not been much effort in evaluating the amount and the distribution of the core bypass flow. In order to evaluate the behavior and the distribution of the coolant flow, a unit-cell experiment was carried out. Unit-cell is the regular triangular section which is formed by connecting the centers of three hexagonal blocks. Various conditions such as the inlet mass flow rate, block combinations and the size of bypass gap were examined in the experiment. CFD analysis was carried out to analyze detailed characteristics of the flow distribution. Commercial CFD code FLUENT 6.3 was validated by comparing with the experimental results. In addition, SST model and standard k-$\varepsilon$ model were validated. The results of CFD simulation show good agreements with the experimental results. SST model shows better agreement than standard k-$\varepsilon$ model. Results showed that block combinations and the size of the bypass gap have an influence on the bypass flow ratio but the inlet mass flow rate does not.

Numerical analysis of a three-dimensional turbulent wall-jet flow (3차원 난류 벽면제트 유동의 수치해석)

  • Ryu, S.Y.;Choi, D.H.;Kim, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.479-484
    • /
    • 2000
  • A Navier-stokes based finite volume method has been developed to analyze an incompressible, steady state, turbulent wall-jet flow. The standard k-e model, the RNG ${\kappa}-{\varepsilon}$ model and their nonlinear counterparts are adopted as a closure relationship. Comparison with the experimental data shows that a linear ${\kappa}-{\varepsilon}$ model performs satisfatorily for two-dimensional wall-jet flows. However, as the flow becomes three dimensional, the linear model fails to predict the spanwise jet growth accurately and the nonlinear model needs to be adopted to capture three-dimensional flow characteristics.

  • PDF

Assessment of RNG Turbulence Model and the Effect of Inlet Pressure on Scavenging Flow (유니프로우 소기식 두상밸브형엔진에서 RNG 난류모델의 평가와 과급압력변화가 소기유동에 미치는 영향)

  • 조상무;허선철;박권하
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.68-81
    • /
    • 2000
  • Many studies for improving a scavenging efficiency have been executed by using simulative manner. This paper addresses to a scavenging process in a uniflow two stroke cycle engine. The Processes are simulated for scavenging pressure variation, after the assessment of turbulent models. The results have shown that employing RNG k-$\varepsilon$ model gave more accurate velocity profiles near the cylinder wall compared with the standard k-$\varepsilon$ model and the charged fresh air has increased with the scavenging pressure increase.

  • PDF

Mean pressure prediction for the case of 3D unsteady turbulent flow past isolated prismatic cylinder

  • Ramesh, V.;Vengadesan, S.;Narasimhan, J.L.
    • Wind and Structures
    • /
    • v.9 no.5
    • /
    • pp.357-367
    • /
    • 2006
  • Unsteady 3D Reynolds Averaged Navier-Stokes (URANS) solver is used to simulate the turbulent flow past an isolated prismatic cylinder at Re=37,400. The aspect ratio of height to base width of the body is 5. The turbulence closure is achieved through a non-linear $k-{\varepsilon}$ model. The applicability of this model to predict unsteady forces associated with this flow is examined. The study shows that the present URANS solver with standard wall functions predicts all the major unsteady phenomena showing closer agreement with experiment. This investigation concludes that URANS simulations with the non-linear $k-{\varepsilon}$ model as a turbulence closure provides a promising alternative to LES with view to study flows having complex features.

Numerical Simulation and PIV Measurement on the Internal Flow in a Centrifugal Mini Pump at Low Flow Rate Conditions

  • Yuan, Hui-Jing;Shao, Jie;Cao, Guang-Jun;Liu, Shu-Hong;Wu, Yu-Lin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.775-780
    • /
    • 2008
  • This paper reports on the internal flow of a centrifugal mini pump working at the low flow rate operating conditions. The RNG $\kappa-\varepsilon$ turbulence model was employed to simulate the three-dimensional turbulent flow in the pump. To examine and certify the simulation results, a transparent acrylic centrifugal mini pump model which is suitable for PIV measurement has been developed. The tongue region and the passages region between blades were investigated using PIV. In order to eliminate the effect of refraction on the area closed to the wall and increase the measurement accuracy, the fluorescent particles were scatted into the working fluid with the tracing particles. It is found from the calculation and PIV measurement results that there is a large area of recirculation flow near the tongue at low flow rate operating conditions. The computationally predicted water head using the $\kappa-\varepsilon$ turbulence model at low flow rate operating conditions are in very good agreement with the experimentally measured water head and the mean velocity distributions at investigation area obtained by PIV and calculation showed a satisfactory agreement as well. Meanwhile, the results of PIV measurements show that the flow status in one passage is different to another. And for capturing the internal flow detail information, the $\kappa-\varepsilon$ turbulence model is not very suitable.

  • PDF