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Abstract

One of the major paradigms for supervised learning in neural network 
community is back-propagation learning. The standard implementations of 
back-propagation learning are optimal under the assumptions of identical 
and independent Gaussian noise. In this paper, for regression function 

estimation, we introduce ε -insensitive back-propagation learning 
algorithm, which corresponds to minimizing the least absolute error. We 
compare this algorithm with support vector machine(SVM), which is 

another ε -insensitive supervised learning algorithm and has been very 
successful in pattern recognition and function estimation problems. For 
comparison, we consider a more realistic model would allow the noise 
variance itself to depend on the input variables.
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regression, support vector machine

1. Introduction

In regression problems it is important not only to predict the output variables 

but also to have some estimate of the error bars associated with those predictions. 

An important contribution to the prediction and estimation arises from the intrinsic 

noise on the data. In most conventional treatments of regression, it is assumed 

that the data have no outliers and the noise can be modeled by a Gaussian 

distribution with a constant variance. However, in many applications the data have 

outliers. Furthermore, it will be more realistic to allow the noise variance itself to 

depend on the input variables. The outliers existing in data imply that the 

regression methods need to be robust. In the literature, there are many robust 
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estimators. The ε -insensitive loss function(ILF) introduced by Vapnik(1995)  

provides the robust estimator. This is similar to loss functions used in the field of 

robust statistics. The ε -ILF enjoy robustness properties with respect to rather 

general classes of distributions. The details are illustrated in Vapnik(1998), and 

Smola and Scholkopf(1998). 

Support vector machine(SVM) regression is a learning technique where the 

goodness of fit is measured not by the usual quadratic loss function, but by a 

different loss function called the ε -ILF. In its present form, SVM was developed 

by Vapnik and co-workers. In regression and time series prediction applications, 

SVM showed excellent performances. 

Recently, Fyfe and Gabrys(1999) have proposed an ε -insensitive unsupervised 

learning rule called as ε -insensitive Hebbian learning, and showed that this rule 

is capable of performing principal component analysis(PCA) type learning in a 

linear network under a variety of conditions. One of the major paradigms for 

supervised learning in neural network(NN) is back-propagation(BP) learning. 

Bishop and Qazaz(1997), and Goldberg and Williams(1998) treated regression 

problem where there is the variance of noise depends on the inputs. In this paper, 

we derive ε -insensitive BP algorithm for regression problem. We then compare 

this with SVM based on ε -ILF in the case where the noise variance itself 

depends on the input variables. 

2. The Noise Model for ε-ILF

In this section, we study the use of the ILF can be justified under the 

assumption that the noise affecting the data is additive and Gaussian, where the 

variance and mean are random variables whose probability distributions can be 

explicitly computed. For the details see Pontil et al.(2000). Data terms of the type 

V (y i - f ( x i ) )  can be interpreted in probabilistic terms as non-Gaussian noise 

models. Recently, Pontil et al.(2000) derived a noise model corresponding to 

Vapnik's ε -ILF, which is defined as follows:

                V (x )≡∣x∣ε =  { 0 if  ∣x∣≤ ε
∣x∣- ε otherwise

.              (1)

This loss function can be approximated as in Seok et al.(2002) by a smooth 

function  

                        V (x ) = g (x-ε)+g (-x-ε) ,                     (2)

where g (x ) =
1
u
log (1+ exp (ux ) ) , u > 0 . The ε -ILF is similar to some of 

the functions used in robust statistics, which are known to provide robustness 

against outliers. However, the loss function (1) is not only a robust cost function, 
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because of its linear outside the interval [- ε , ε ] , but also assigning zero cost 

to errors smaller than ε . It turns out that the underlying noise model consists of 

the superposition of Gaussian processes with different variances and means, that 

is:

exp (-∣x∣ε ) =
⌠
⌡

∞

-∞

⌠
⌡

∞

0
λ ε ( t ) β exp (-β (x- t )

2 )dβ d t

with

               λ ε ( t ) =
1

2 (ε+1)
(χ [- ε , ε ] +δ ( t-ε)+δ ( t+ε) ) ,    

               P (β ) =
C

β 2
exp (- 1

4β ) . 
The probability distribution function P ε ( β, t )  has the form P ε ( β, t ) =  

P (β ) λ ε ( t ) . Here, χ [- ε , ε ] ( t )  is 1 for t∈ [-ε , ε ] , 0 otherwise. For the 

details of λ ε ( t ) , P (β )  and P ε ( β, t ) , see Pontil et al.(2000). The above model 

has a simple interpretation: using the ILF is equivalent to assuming that the noise 

affecting the data is Gaussian. However, the variance and the mean of the 

Gaussian noise are random variables: the variance ( σ 2= 1 / (2 β) ) has a unimodal 

distribution that does not depend on ε , and the mean has a distribution which is 

uniform in the interval [- ε , ε ] . The distribution of the mean is consistent with 

the current understanding of the ILF: errors smaller than ε  do not count because 

they may be due entirely to the bias of the Gaussian noise.

3. ε-Insensitive Supervised Learning Algorithms

In this section we derive ε -insensitive BP algorithm based on ε -ILF. We also 

review SVM regression based on ε -ILF. Suppose we are given a training data 

set { ( x i, y i )∈ R
d
×R }

n
i = 1
, obtained by sampling, with noise, some unknown 

function f ( x )  and we asked to recover the function f  from the data. 

3.1 ε-Insensitive Back-propagation Algorithm

We now illustrate how to derive ε -insensitive BP algorithm for multi-layer 

neural network(NN) with one hidden layer. First of all, we need to review how 

the outputs in the previous layer are transferred to the successive layer. Let w ji
 

denote a weight in the input layer, going from input i  to hidden unit j , and θ j  

denote the bias for hidden unit j . Let v jk  denote a weight in the hidden layer, 
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going from hidden unit j  to output unit k , and θ k  denote the bias for output 

unit k . Let g j, g k  denote activation functions of hidden unit j  and output unit 

k , respectively. We often use continuous sigmoidal and linear functions as 

activation functions in hidden and output layers, respectively. Then, we have the 

following relations:

a pj= ∑ i w ji x p i, h pj= g j (a pj ) , b pk= ∑ j v kj h pj, ŷ pk= g k (b pk ) ,

where the subscript p  corresponds to the p th observation value.  

We now illustrate learning procedures based on two loss functions (1) and (2), 

which are then minimized with respect to the weights and biases in the network. 

See Haykin(1999) for the derivation of conventional BP algorithm for NNs. The 

proposed BP learning can be summarized as follows:

(1) For units in output layer,

   Δ pv kj = α { 0 , ∣y pk- ŷ pk∣ < ε

sign (y pk- ŷ pk )h p j, ∣y pk- ŷ pk∣ ≥ ε
         (loss (1))

         = α [-
∂g(y pk- ŷ pk-ε)

∂ ŷ pk
-
∂g(- y pk+ ŷ pk-ε)

∂ ŷ pk ]h p j  (loss (2))
         ≡ α δ pk h pj

   Δ pθ k = β δ pk

(2) For units in hidden layer,

   Δ pw j i = α ∑
k
δ p k v k j ŷ p i

         ≡ α δ p j ŷ p i ,

    Δ pθ j = β δ p j ,

where α , β  are learning rates.    

3.2 Support Vector Machine

For given training data set { ( x i, y i )∈ R
d×R } ni = 1 , we consider the following 

model 

f ( x ) =  w
t
φ ( x ) + b ,

where the input data are projected to a higher dimensional feature space. In 

empirical risk minimization we optimize the cost function based on Vapnik's ε
-ILF. This leads to the optimization problem 

minimize 1
2
∥w∥

2
+ C ∑

n

i=1
(ξ i + ξ

*
i ) ,
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subject to  {
y i- w t

φ ( x i ) - b ≤ ε + ξ i
w tφ ( x i ) + b - y i ≤ ε+ ξ*i
ξ i, ξ

*
i ≥ 0

Here ε  is the accuracy that we demand for the approximation, which can be 

violated by means of the slack variables ξ , ξ*i . The conditions for optimality 

yield the following dual problem in the Lagrange multipliers α , α
* :

maximize - 1
2 ∑

n

i=1
∑
n

j=1
(α i- α

*
i )(α j- α

*
j )K ( x i, x j )

                        - ε ∑
n

i=1
(α i + α

*
i ) + ∑

n

i=1
y i (α i- α

*
i ) ,

              subject to ∑
n

i= 1
(α i - α

*
i ) = 0  and   α i, α

*
i ∈ [0 , C ]

The kernel trick K ( x i, x j )=φ ( x i )
t
φ ( x j )  is again applied within the 

formulation of this quadratic programming problem. Finally, the SVM for nonlinear 

function estimation takes the form: 

f ( x ) =  ∑
n

i=1
(α i- α

*
i )K ( x , x i ) + b .

The well used kernels for regression problem are given below.

K ( x , y ) = ( x t y + 1 ) p,  K ( x , y ) = e
-
∥x- y∥2

2σ
2

. 

Here, p  and σ
2  are kernel parameters. 

4. Empirical Studies

We illustrate the performance of the proposed learning procedures through one 

simulated example. The simulated data set consists of 100 input values( x ) 

generated from a uniform distribution U( 0,1)  and 100 output values( y )  

generated from a normal distribution N( 0.5+0.4× sin (2πx), x 2 ) , which is rather 

realistic model would allow the noise variance itself to depend on the input 

variables. Such model is said to heteroscedastic in the statistics literature. In much 

of the work on regression problems in the statistical and neural networks 

literatures, it is assumed there is a global noise level, independent of input vector 

x . Bishop and Qazaz(1997) examined the case of input-dependent noise for neural 

networks, and Goldberg and Williams(1998) developed the treatment of 

input-dependent noise model for Gaussian process regression.  problem where 

there is the variance of noise depends on the inputs.

In the simulation study, we used SVM with ε =0.01, C =500 and kernel 
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parameter σ =0.8. These values were determined by 10-fold cross validation. Fig. 

1 shows regression estimation results by SVM. We used a multi-layer NN with 

10 hidden units. We also used ε =0.01 for ε -insensitive BP of NN. These 

numbers were also determined by 10-fold cross validation. The NN was iterated 

to get solutions until either MSE<0.01 or 30,000 iteration was satisfied first. The 

estimation results by NN are reported in Fig. 2. We conducted experiments for 

NN by using two ε -insensitive BP algorithms.   

<Fig. 1> Function Estimation by SVM <Fig. 2> Function Estimation by NN

In Fig. 1, the dotted and the solid lines represent the true function and the 

fitted regression function, respectively. In Fig. 2, the dotted line represents the 

true function. Te dash-dotted and the solid lines represent the regression functions 

fitted by two ε -insensitive BP algorithms based on error functions (1) and (2), 

respectively. In both Figs, the dots represent the observed values. From Fig. 1, we 

recognize SVM based on ε -ILF works quite well for the input-dependent noise 

model. Fig.2 shows that the BP algorithm based on the ε -ILF works bad, but 

the algorithm based on the approximated ε -ILF works quite well like SVM. We 

observed the similar patterns, although we did not reported here about preliminary 

simulation studies for the input-dependent noise model. 

To conclude, we recommend using SVM, since NNs based on two ε
-insensitive BP algorithms are much more expensive computationally than SVM. 

The main formulation of SVM results in solving a simple convex optimization 

problem. Hence, this is not a computationally expensive way.
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