• Title/Summary/Keyword: Stand-alone power system

Search Result 241, Processing Time 0.026 seconds

Development of Stand-Alone Risk Assessment Software for Optimized Maintenance Planning of Power Plant Facilities (발전설비 최적 정비를 위한 독립형 위험도 평가 소프트웨어 개발)

  • Choi, Woo Sung;Song, Gee Wook;Kim, Bum Shin;Chang, Sung Ho;Lee, Sang Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1169-1174
    • /
    • 2015
  • Risk-Risk-based inspection (RBI) has been developed in order to identify risky equipments that can cause major accidents or damages in large-scale plants. This assessment evaluates the equipment's risk, categorizes their priorities based on risk level, and then determines the urgency of their maintenance or allocates maintenance resources. An earlier version of the risk-based assessment software is already installed within the equipment management system; however, the assessment is based on examination by an inspector, and the results can be influenced by his subjective judgment, rather than assessment being based on failure probability. Moreover, the system is housed within a server, which limits the inspector's work space and time, and such a system can be used only on site. In this paper, the development of independent risk-based assessment software is introduced; this software calculates the failure probability by an analytical method, and analyzes the field inspection results, as well as inspection effectiveness. It can also operate on site, since it can be installed on an independent platform, and has the ability to generate an I/O function for the field inspection results regarding the period for an optimum maintenance cycle. This program will provide useful information not only to the field users who are participating in maintenance, but also to the engineers who need to decide whether to extend the lifecycle of the power machinery or replace only specific components.

Normal Operation Characteristics of 30kW Scale CVCF Inverter-Based Micro-grid System (30kW급 CVCF 인버터 기반의 Micro-grid의 정상상태 운용특성에 관한 연구)

  • Ferreira, Marito;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.662-671
    • /
    • 2020
  • Recently, for the purposes of reducing carbon dioxide(CO2) emissions in the island area, countermeasures to decrease the operation rate of diesel generator(DG) and to increase one of renewable energy sources(RES) is being studied. In particular, the demonstration and installation of stand-alone micro-grid(MG) system which is composed of DG, RES and energy storage system(ESS) has been implemented in some island areas such as Gapa-do, Gasa-do and Ulleung-do island. However, many power quality(PQ) problems may be occurred due to an intermittent output of RES including photovoltaic(PV) system and wind power(WP) system in a normal operating of constant voltage & constant frequency(CVCF) inverter-based MG system. Therefore, this paper presents a modeling of the 30kW scale MG system using PSCAD/EMTDC, and also implements a 30kW scale CVCF inverter-based MG system as test devices to analyze normal operating characteristics of MG system. From the simulation and test results, it is confirmed that the proposed methods are useful and practical tools to improve PQ problems such as under-voltage, over-voltage and unbalanced load in CVCF inverter-based MG system.

A Real-Time Simulation Method for Stand-Alone PV Generation Systems using RTDS (RTDS를 이용한 단독운전 태양광 발전시스템의 실시간 시뮬레이션)

  • Kim, Bong-Tae;Lee, Jae-Deuk;Park, Min-Won;Seong, Ki-Chul;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.190-193
    • /
    • 2001
  • In order to verify the efficiency or availability and stability of photovoltaic(PV) generation systems, huge system apparatuses are needed, in general, in which an actual size of solar panel, a type of converter system and some amount of load facilities should be installed in a particular location. It is also hardly possible to compare a Maximum Power Point Tracking (MPPT) control scheme with others under the same weather and load conditions in an actual PV generation system. The only and a possible way to bring above-mentioned problem to be solved is to realize a transient simulation scheme for PV generation systems using real weather conditions such as insolation and surface temperature of solar cell. The authors, in this paper, introduces a novel simulation method, which is based on a real-time digital simulator (RTDS), for PV generation systems under the real weather conditions. Firstly, VI characteristic equation of a solar cell is developed as an empirical formula and reconstructed in the RTDS system, then the real data of weather conditions are interfaced to the analogue inputs of the RTDS. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme in this paper. The results shows that the cost effective verifying for the efficiency or availability and stability of PV generation systems and the comparison research of various control schemes like MPPT under the same real weather conditions are possible.

  • PDF

Algorithm Deciding Offshore Cable Layout Valid for Integrated Power Supply Between Adjacent Islands (근거리 도서간 통합전력공급에 유효한 해저케이블 포설 방안 결정 알고리즘)

  • Kim, Mi-Young;Rho, Dae-Seok;Moon, Guk-Hyun;Seo, In-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.28-36
    • /
    • 2018
  • Islands are supplied with power from diesel generation or from photovoltaic power generation, and problems with offshore environmental impacts (age deterioration, salt pollution), environmental pollution (exhaust gas, noise, dust) and power generation costs (installation, maintenance) have increasingly emerged. In 2016, the cost recovery rate was only 27%, and deficits reached 73% on 65 islands managed by KEPCO. In terms of deficits, the costs incurred in the power generation sector accounted for 91%, with the ratio of fixed costs at about 60%. Analysis suggests that operating costs can be reduced with an optimal power supply system that improves power generation efficiency and makes operating systems more efficient. Therefore, it is possible to simplify fuel transportation and facility maintenance, because one island integrates the power plants of remote islands, and offshore cable is used to supply power to the other islands. From the economic evaluations in this paper, an algorithm deciding offshore cable layout validity for an integrated power supply between adjacent islands is presented. Simulation results based on the proposed algorithm confirmed that an integrated power supply is economical for existing stand-alone operations on islands having diesel generation, low peak power, and near distances.

The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell (75kW 용융탄산염 연료전지 시스템의 MBOP 개발)

  • Kim, Beom-Joo;Kim, Do-Hyung;Lee, Jung-Hyun;Kang, Seung-Won;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.353-356
    • /
    • 2009
  • A pivotal mechanical balance of plant for 75kW class molten carbonate fuel cells comprise of a catalytic burner and an ejector which has been designed and tested in KEPRI(Korea Electric Power Research Institute). The catalytic burner, which oxidizes residual fuel in the anode tail gas, was operated at several conditions. Some problems arose due to local overheating or auto-ignition, which could limit the catalyst life. The catalytic burner was designed by considering both gas mixing and gas velocity. Test results showed that the temperature distribution is very uniform. In addition, an ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air Several ejectors were designed and tested to form a suction on the fuel tail gas and balance the differential pressures between anode and cathode over a range of operating conditions. The tests showed that the design of the nozzle and throat played an important role in balancing the anode tail and cathode inlet gas pressures. The 75kW MCFC system built in our ejector and catalytic burner was successfully operated from Novembe, 2008 to April, 2009. It recorded the voltage of 104V at the current of 754A and reached the maximum generating power of 78.5kW DC. The results for both stand-alone and integration into another balance of plant are discussed.

  • PDF

$^{18}$F-Fluoride-PET in Skeletal Imaging ($^{18}$F-Fluoride-PET을 이용한 골격계 영상)

  • Jeon, Tae-Joo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.253-258
    • /
    • 2009
  • Bone scintigraphy using $^{99m}$Tc-labeled phosphate agents has long been the standard evaluation method for whole skeletal system. However, recent shortage of $^{99m}$Tc supply and advanced positron emission tomography (PET) technology evoked the attention to surrogate radiopharmaceuticals and imaging modalities for bone. Actually, fluorine-18 ($^{18}$F) was the first bone seeking radiotracer before the introduction of $^{99m}$Tc-labeled agents even though its clinical application failed to become pervasive anymore after the rapid spread of Anger type gamma camera systems in early 1970s. However, rapidly developed PET technology made us refocus on the usefulness of $^{18}$F as a PET tracer. Early study comparing $^{18}$F-Na PET scan and planar bone scintigraphy reported that PET has higher sensitivity and specificity in the diagnosis of metastatic bone lesions than planar bone scan. Subsequent reports comparing between PET and both planar and SPECT bone image also revealed better results of PET scan in similar study groups. Rapid clinical application of PET/CT also accumulated considerable amount of experiences in skeletal evaluation and this modality is known to have better diagnostic power than stand alone PET system as well as bone scan. Furthermore $^{18}$F-Na PET/CT revealed better or at least equal results in detection of primary and metastatic bone lesions compared with CT and MRI. Therefore, it is obvious that $^{18}$F-Na PET/CT has potential to become new imaging modality for practical skeletal evaluation so continuous and careful evaluation of this modality and radiopharmaceutical must be required.

The Development of Modularized Post Processing GPS Software Receiving Platform using MATLAB Simulink

  • Kim, Ghang-Ho;So, Hyoung-Min;Jeon, Sang-Hoon;Kee, Chang-Don;Cho, Young-Su;Choi, Wansik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.121-128
    • /
    • 2008
  • Modularized GPS software defined radio (SDR) has many advantages of applying and modifying algorithm. Hardware based GPS receiver uses many hardware parts (such as RF front, correlators, CPU and other peripherals) that process tracked signal and navigation data to calculate user position, while SDR uses software modules, which run on general purpose CPU platform or embedded DSP. SDR does not have to change hardware part and is not limited by hardware capability when new processing algorithm is applied. The weakness of SDR is that software correlation takes lots of processing time. However, in these days the evolution of processing power of MPU and DSP leads the competitiveness of SDR against the hardware GPS receiver. This paper shows a study of modulization of GPS software platform and it presents development of the GNSS software platform using MATLAB Simulink™. We focus on post processing SDR platform which is usually adapted in research area. The main functions of SDR are GPS signal acquisition, signal tracking, decoding navigation data and calculating stand alone user position from stored data that was down converted and sampled intermediate frequency (IF) data. Each module of SDR platform is categorized by function for applicability for applying for other frequency and GPS signal easily. The developed software platform is tested using stored data which is down-converted and sampled IF data file. The test results present that the software platform calculates user position properly.

An AHP Application to Find the Most Suitable Type of Organizational Formation and Scope of Work for the Upcoming Seoul MTA (AHP기법을 이용한 교통정책 최적대안의 선정 방안연구 - 수도권광역교통청의 최적 설립형태와 업무범위 고찰 -)

  • Bang, Peter Chulho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.103-112
    • /
    • 2018
  • To improve current transportation service, a new Seoul Metropolitan Transportation Administration (Seoul MTA), backed by Korean central government, is on the way of being established. This paper tries to answer questions such as 'What is the best type of organizational formation of the upcoming institute to deliver better, seamless transportation service?' and 'What is the most suitable scope of work of the upcoming institute to achieve the goal?' A group decision making process, a kind of AHP (Analytic Hierarchy Process) was adopted to measure the experts' preferences of alternatives in quantitative scale measurement. To evaluate the alternatives, five evaluation criteria were selected. Among them, it is revealed that 'Improvement of the transportation service' and 'Political & Administrative power to make it happen' are the two most important evaluation criteria over what types or operating costs of the administrations are. When the five evaluation criteria are applied onto the group of alternatives, it yields that a stand-alone organization, which should be independent from upper-level government body, should have an integrated and sole authority on the area-wide transportation system management.

A Study on Design of Wind Blade with Rated Capacity of 50kW (50kW 풍력블레이드 설계에 관한 연구)

  • Kim, Sang-Man;Moon, Chae-Joo;Jung, Gweon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • The wind turbines with a rated capacity of 50kW or less are generally considered as small class. Small wind turbines are an attractive alternative for off-grid power system and electric home appliances, both as stand-alone application and in combination with other energy technologies such as energy storage system, photovoltaic, small hydro or diesel engines. The research objective is to develop the 50kW scale wind turbine blades in ways that resemble as closely as possible with the construction and methods of utility scale turbine blade manufacturing. The mold process based on wooden form is employed to create a hollow, multi-piece, lightweight design using carbon fiber and fiberglass with an epoxy based resin. A hand layup prototyping method is developed using high density foam molds that allows short cycle time between design iterations of aerodynamic platforms. A production process of five blades is manufactured and key components of the blade are tested by IEC 61400-23 to verify the appropriateness of the design. Also, wind system with developed blades is tested by IEC 61400-12 to verify the performance characteristics. The results of blade and turbine system test showed the available design conditions for commercial operation.

Annual Base Performance Evaluation on Cell Temperature and Power Generation of c-Si Transparent Spandrel BIPV Module depending on the Backside Insulation Level (스팬드럴용 투광형 결정계 BIPV창호의 후면단열 조건에 따른 연간 온도 및 발전성능 분석 연구)

  • Yoon, Jong-Ho;Oh, Myung-Hwan;Kang, Gi-Hwan;Lee, Jae-Bum
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.24-33
    • /
    • 2012
  • Recently, finishing materials at spandrel area, a part of curtain-wall system, are gradually forced to improve thermal insulation performance in order to enhance the building energy efficiency. Also, Building Integrated Photovoltaics(BIPV) systems have been installed in the exterior side of the spandrel area, which is generally composed of windows. Those BIPVs aim to achieve high building energy efficiency and supply the electricity to building. However, if transparent BIPV module is combined with high insulated spandrel, it would reduce the PV efficiency for two major reasons. First, temperature in the air space, located between window layer and finishing layer of the spandrel area, can significantly increase by solar heat gain, because the space has a few air density relative to other spaces in building. Secondly, PV has a characteristics of decreased Voltage(Voc and Vmp) with the increased temperature on the PV cell. For these reasons, this research analyzed a direct interrelation between PV Cell temperature and electricity generation performance under different insulation conditions in the spandrel area. The different insulation conditions under consideration are 1) high insulated spandrel(HIS) 2) low insulated spandrel(LIS) 3) PV stand alone on the ground(SAG). As a result, in case of 1) HIS, PV temperature was increased and thus electricity generation efficiency was decreased more than other cases. To be specific, each cases' maximum temperature indicated that 1) HIS is $83.8^{\circ}C$, 2) LIS is $74.2^{\circ}C$, and 3) SAG is $66.3^{\circ}C$. Also, each cases yield electricity generation like that 1) HIS is 913.3kWh/kWp, 2) LIS is 942.8kWh/kWp, and 3) SAG is 981.3kWh/kWp. These result showed that it is needed for us to seek to the way how the PV Cell temperature would be decreased.