• 제목/요약/키워드: Stand structure and dynamics

검색결과 24건 처리시간 0.017초

지리산(智異山) 구상나무임분(林分)의 식생구조(植生構造)와 치수(稚樹) 발생(發生) 및 생육(生育) 동태(動態) (Vegetation Structure, Regeneration Niche, and Dynamics of the Saplings in Abies koreana Forest of the Mt. Chiri)

  • 정재민;이수원;이강영
    • 한국산림과학회지
    • /
    • 제85권1호
    • /
    • pp.34-43
    • /
    • 1996
  • 본(本) 연구(硏究)는 지리산(智異山)의 아고산대(亞高山帶)에 분포(分布)하고 있는 구상나무 임분(林分)에 대한 식생구조(植生構造)와 상층(上層)의 피도(被度)에 따른 유묘(幼苗)와 치수(稚樹)의 발생(發生)과 생육동태(生育動態)를 조사(調査)하였다. 구상나무 임분(林分)의 밀도(密度)는 상층(上層)보다 중층(中層)에서 높게 나타났으나, 평균면속(平均面續), 개체간(個體間)의 거리(距離)에서는 상층(上層)이 높았으며, 그리고 상층(上層)은 규칙분포(規則分布)를 하고 있었다. 상층(上層)의 피도(被度)에 따른 유묘(幼苗)와 치수(稚樹)의 발생밀도(發生密度)는 25% 내외(內外)의 약도(弱度)에서 가장 높았고, 다음은 50% 내외(內外)의 중용도(中庸度), 임분(林分)의 측방순(側方順)이였으며, 75% 내외의 강도(强度) 임분(林分)에서는 가장 낮았다. 그리고 치수(稚樹)의 연년생장량(連年生長量)과 최근 5년간(年間)의 생장량(生長量)은 측방(側方)의 임분(林分)에서 가장 양호(良好)하였으며, 상층(上層)의 울폐도(鬱閉度)가 높아질수록 점차 저하(低下)되였다. 상층(上層)의 피도(被度)가 낮은 임분(林分)에서는 10-20년생(年生)의 치수(稚樹)가 많았고, 상층(上層)의 피도(被度)가 높은 임분(林分)에서는 20-30년생(年生) 치수(稚樹)가 많았다. 상층임분(上層林分)의 측방(側方)에서 정상적으로 생장(生長)하는 A형(型)은 임내(林內)의 울폐도(鬱閉度)가 증가(增加)할수록 극히 감소(減少)하였고, 반면 피압(被壓)에 의한 생장(生長)이 억제(抑制)되거나 중지(中止)된 D, E형(型)의 출현율(出現率)은 급격히 높아졌다. 이상의 결과(結果)에서 상층목(上層木)의 측방(側方) 또는 gap에서는 정상적으로 자라 원추형(圓錐型)의 수형(樹形)을 나타내고 있었으나, 상층목(上層木)의 피도(被度)가 높아질수록 치수(稚樹)는 피압(被壓)되어 가지의 간격이 좁고 정단부(頂端部)의 생장(生長)이 억제(抑制)된 산형(傘型)의 치수(稚樹)가 증가(增加)되고 있었다.

  • PDF

RCP 8.5 기후변화 시나리오에 따른 소나무림과 굴참나무림의 산림 탄소 동태 변화 추정 연구 (Estimating the Changes in Forest Carbon Dynamics of Pinus densiflora and Quercus variabilis Forests in South Korea under the RCP 8.5 Climate Change Scenario)

  • 이종열;한승현;김성준;장한나;이명종;박관수;김춘식;손영모;김래현;손요환
    • 한국농림기상학회지
    • /
    • 제17권1호
    • /
    • pp.35-44
    • /
    • 2015
  • 산림은 많은 양의 탄소를 저장하고 있으며, 산림 탄소 동태는 기후변화에 따라 변화할 것으로 예상된다. 본 연구는 우리나라 산림에서 가장 우점하는 침엽수종과 활엽수종인 소나무림과 참나무림을 대상으로 최근 개발 및 개선된 한국형산림토양탄소모델(Korean Forest Soil Carbon model; KFSC model)을 이용하여 두 가지 기후변화 시나리오(2012년 기온이 2100년까지 유지되는 시나리오(CT), Representative Concentration Pathway(RCP) 8.5 시나리오) 하에서의 산림 탄소 동태를 예측하였다. 5차 국가산림자원조사 자료로부터 소나무림과 굴참나무림 조사구들을 추출한 뒤, 이를 행정구역(9개 도, 7개 특별 광역시) 및 영급(1-5영급, 6영급 이상)별로 분류하여 탄소 동태 모의 단위를 설정하였다. 탄소 저장고는 2012년을 기준으로 초기화하였으며, 모의 기간인 2012년부터 2100년까지 모든 교란은 고려하지 않았다. 모의 결과 산림 탄소 저장량은 시간이 경과함에 따라 전반적으로 증가하지만, CT 시나리오에 비하여 RCP 8.5 시나리오 하에서 산림 탄소 저장량이 낮게 나타났다. 소나무림의 탄소 저장량(Tg C)은 2012년에 260.4에서 2100년에는 각각 395.3(CT 시나리오) 및 384.1(RCP 8.5 시나리오)로 증가하였다. 굴참나무림의 탄소 저장량(Tg C)은 2012년에 124.4에서 2100년에는 219.5(CT 시나리오) 및 204.7(RCP 8.5 시나리오)로 각각 증가하였다. 5차 국가산림자원조사 자료와 비교한 결과, 고사유기물 탄소 저장량의 초기값은 타당한 것으로 나타났다. 모의 기간 동안 소나무림과 굴참나무림의 연간 탄소 흡수율($g\;C\;m^{-2}\;yr^{-1}$)은 CT 시나리오 하에서 각각 71.1과 193.5, RCP 8.5 시나리오 하에서 각각 65.8과 164.2로 추정된다. 따라서 우리나라 소나무림과 굴참나무림의 탄소 흡수잠재력은 지구 온난화에 의하여 감소할 것으로 예상된다. 비록 모델의 구조와 파라미터로부터 불확실성이 존재하지만 본 연구는 미래 산림 탄소 동태 파악에 기여할 것으로 기대된다.

The Pattern of Natural Regeneration by Canopy Gap Size in the Mixed Broadleaved-Korean Pine Forest of Xiaoxing'an Mountains, China

  • Jin, Guangze;Tian, Yueying;Zhao, Fengxia;Kim, Ji Hong
    • 한국산림과학회지
    • /
    • 제96권2호
    • /
    • pp.227-234
    • /
    • 2007
  • The forest canopy gap has been well known as a substantial process of forest cyclic regeneration and important role in stand structure, dynamics, and biodiversity of the forest ecosystem. Based on 3,600 $5m{\times}5m$ square grids in a 9ha permanent experimental plot, the study was conducted to evaluate the regeneration pattern of woody species by developmental stage {seedlings (<1 m of height), saplingI (>1 m of height, <2 cm of DBH), and saplingII (2 cm$<200m^2$), $201-400m^2$, $400-600m^2$, $601-800m^2$, and $>800m^2$) in the mixed broadleaved-Korean pine forest. The results indicated that the regenerating trees of Populus ussuriensis occurred only in the canopy gap area, considered to be a typical gap-dependent species. The regeneration of Ulmus japonica, Ulmus laciniata, and Maackia amurensis could be generally satisfied with the gap size of $201-600m^2$, Betula costata and Prunus padus with gap size of $401-800m^2$, Picea koraiensis with gap size of $201-800m^2$, Fraxinus mandshurica and Syringa reticulata var. mandshurica with smaller than $800m^2$, respectively. Acer ukurunduense and Acer tegmentosum were likely to have no problem with the gap size to make gap regeneration. Acer mono and Tilia amurensis looked more capable of regenerating in the closed canopy disregarding the upper crown condition. The regeneration of Pinus koraiensis and Abies nephrolepis had no trouble under the canopy condition in less than $800m^2$of gap size. The density of regenerating shrubs was rather high, especially under the closed canopy, considered to be associated with great amount of regeneration production in such shade tolerant species as Lonicera maackii, Corylus mandshurica, Euonymus pauciflorus, and Philadelphus schrenkii under the closed canopy. Pearson correlation coefficient was computed to compare the similarity among non-gap area and five gap size classes by developmental stages for trees and shrubs. The similarity coefficients among closed canopy and the gap size classes were mostly significantly correlated to each other with a few exceptions.

소쇄원 오곡문 담장의 구조적 안정에 미치는 요인 분석 (A Study The Structural Stability of the Fence Ohgokmun Soswaewon Factor Analysis)

  • 장익식;전형순;하태주;이재근
    • 한국전통조경학회지
    • /
    • 제31권4호
    • /
    • pp.113-122
    • /
    • 2013
  • 본 연구는 전통구조물의 안정에 미치는 영향에 대해 분석하였다. 우리나라 전통조경공간에서 축석 기둥으로 조성된 담장의 기초가 안정함에 따라 오랜 세월동안 무너지지 않고 유지됨을 알 수 있었다. 연구 대상지인 담양 소쇄원의 오곡문 담장은 자연과 조화되는 하나의 전통구조물로 그 어떠한 영향에도 변형됨이 없이 지금까지 유지되어 왔다. 여기에는 우리 선조들의 슬기와 지혜가 곁들어 있음을 짐작할 수 있다. 그러나 전통구조물 재현에 있어 하자발생 빈도가 빈번하다. 이는 전통구조물에서 벗어난 공법으로 약식 적용하였기 때문이다. 따라서 본 연구의 대상인 오곡문 담장이 무너지지 않는 요인을 통해 그 해결 방안을 간접적으로 얻고자 함이다. 아울러 연구 방법으로는 물리적 시험과 역학 계산방식의 유추 해석을 통해 다음의 결과를 도출하였다. 첫째, 내적 요인으로 오곡문 담장의 구조를 이루는 부재와 결속 방식이다. 1) 기초 지반의 안정이다. 여기서 원지반인 모암의 역할이 크다는 사실과 침하 현상이 없다는 것이다. 2) 수문에 의한 마찰력을 최소화하기 위해 물길을 두 갈래로 분리한 축석형태와 메쌓기 공법을 통한 수문에서의 지내력과 범람을 대비하여 우회수로를 만들었다. 3) 하중에 의한 지지력과 내구성에 견디는 구조로 재료의 강도와 축조형태에 있어 각 개체 간의 힘의 분산을 가져오는 마찰력을 최대화하는 공법으로 적용되었다. 둘째, 외적 요인으로 오곡문 담장의 역학 수리 계산식을 통해서 얻은 결과, 비바람과 수문에 의한 영향이 크게 나타나지만, 담장의 구조적 안정에 해칠 만한 힘의 작용이 미흡하다는 결론이다. 따라서 본 연구의 결과, 내 외적 영향에도 잘 견디는 구조로 구성된 구조체로 볼 수 있다. 그러나 향후 사후관리 측면과 이상기후로 인한 환경 인자에 의해 무너질수도 있다는 사실이다.