• Title/Summary/Keyword: Stamped base

Search Result 11, Processing Time 0.025 seconds

Optimized Design of HDD Stamped Base to Increase Stiffness (HDD Stamped base의 강성 증가를 위한 최적 설계)

  • Yoon, Joo-Young;Lim, Geonyup;Kim, Seokhwan;Park, Young-Pil;Park, No-Cheol;Park, Kyoung-Su
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.62-66
    • /
    • 2013
  • For the production method, stamp base is increasing the market share. But also, by the manufacturing method, stiffness of the stamp base is small. Many studies have been carried out in order to increase the stiffness of the stamp base. In this study, we optimally designed according to the position of bolting using a screening method in order to increase the stiffness base. After establishing a simulation model, the maximum deformation and frequency of the first mode based having relevance with stiffness of the base, were optimized. There for, it was possible to expect of increasing the stiffness of the stamp base.

Review in terms of the earthen wall stamped technique in the Three Kingdoms period (삼국시대 토성 판축기법 용어 검토)

  • SHIN Heekweon
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.38-53
    • /
    • 2022
  • In this article, I have summarized and reviewed the concepts and terms surrounding the stamped construction technique, focusing on earthen walls in the Three Kingdoms period. This is because confusion is caused by defining the nature of the earthen walls by using various concepts and terms for each researcher regarding the substance and construction method of the earthen walls. The stamped earth method is a representative ancient civil engineering or construction technique in which a frame is made of plates to form a fortress wall, a fence, and the base of a building, and then soil or sand is poured into it layer by layer and then stamped with a bat to make it solid. Therefore, in order to prove that the earthen wall was built by the stamped earth method, evidence such as a narrow plate, a column for fixing it, long horizontal and vertical wood pieces to support the narrow plate, and traces of pounding the soil must be detected. However, in Korea, there are very few cases where such evidence has been fully excavated, so it is necessary to agree on how strictly the standards for the stamped earth method will be applied. The terms related to the stamped technique mobilized for the construction of the earthen walls were explained with actual examples by dividing the terms related to the concept into terms related to the principle and unit of the stamped plate, and the specific stamped technology. In particular, in Pungnabtoseong Earthen wall, a variety of typical and diverse methods of building the ancient stamped earthen wall were identified so that decisive data could be secured to understand the principles and techniques of the stamped earthen wall. In the future, a more general understanding of the stamped technique will be possible only when more evidence related to it is found in relics other than Pungnabtoseong Earthen wall.

Analysis of dynamic characteristic applying frame on stamped base in 2.5 inch hard disk drive (프레임이 적용된 스탬프 베이스의 동특성 분석)

  • Lim, Geonyup;Park, No-Cheol;Park, Kyoung-Su;Kim, Seokhwan
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • HDD has been easily exposed to the external shock and vibration because HDD has to apply to mobile devices. Therefore, the stiffness of base has been the important factors for the design of HDD. To improve the stiffness of base, the frame was applied to the base. First, the finite element model of the base was constructed. Then, the FE model was verified by modal analysis. Drop test was performed to confirming the shock simulation model. The dynamic characteristic of original base which is verified is compared with the base which is applied the frame through modal analysis and shock analysis.

Preform Designin Tube by Using the Hydroforming (Hydroforming을 이용한 Tube 의 예비 가공형 설계)

  • 이한남
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.39-44
    • /
    • 1999
  • Hydroforming is a forming process enabling circular metal tubes to be produced in complex cross sections along curved axial paths With the availability of advanced machine design and control They offer advantages over stamped sheet metal in lower tooling cost and structural mass The technology is relatively new so that there is no large knowledge base to assist the fundamentals of tube hydroforming technology. The purpose of this paper is found that adaptive bending condition and contact condition for bended part has uniform thickness distribution.

  • PDF

Effect of Hot-stamping on Microstructures and Tensile Properties of Al-Si Coated Boron Steel Welds with Laser Source (Al-Si 도금된 보론강 레이저 소스에 따른 레이저 용접부의 미세조직과 기계적 성질에 미치는 핫스탬핑 처리의 영향)

  • Oh, Myeong-Hwan;Kong, Jong-Pan;Kwon, Min-Suck;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.96-106
    • /
    • 2013
  • In this study, the effect of laser source($CO_2$ and Nd:YAG) on the microstructure and tensile properties of laser welded Al-Si coated boron steel(1.2mmt) was investigated with before and after hot-stamping. In case of as welds condition, fracture occurred in base metal unrelated to the laser source. It could be explained that tensile strength of fusion zone composed of martensite and bainite is higher than that of base metal that contains a lot of ferrite despite dilution of Al and Si from coating layer to fusion zone. In case of hot-stamping condition, the fracture occurred in fusion zone irrelevant to laser source and the tensile strength was lower than hot stamped base metal. In the $CO_2$ laser welds, $Fe_3$(Al,Si) formed near the bond line was transformed into ferrite during hot-stamping. Therefore tensile strength of bond line is lower than that of base metal and center of fusion zone and the fracture occurred in the bond line. On the other hand, in the Nd:YAG laser welds, the higher concentration of Al formed the ferrite in the fusion zone during hot-stamping treatment. Also, the thickness of centerline was thinner than that of base metal. Therefore, it is considered that fracture occurred in centerline of fusion zone due to effect of concentration stress, and it leaded to a lower tensile strength and elongation.

Formability Evaluation of Tailor Welded Blanks of Boron Steel Sheets by Erichsen Cupping Test at Elevated Temperature (보론강 용접 맞춤 판재의 고온 에릭슨 커핑 평가)

  • Kim, Y.I.;Kim, J.H.;Kim, Y.;Lee, M.Y.;Moon, Y.H.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.568-574
    • /
    • 2011
  • The combination of tailor welded blank (TWB) and hot stamping often offers improved crash-worthiness and reduced mass of stamped parts in the automobile body. To investigate the formability of laser TWB and the reliability of weld line, the present study used 22MnB5 boron steel sheet of the same thickness and used the Erichsen cupping test at elevated temperatures. The effects of laser direction, die temperature, weld line positions and forming speed on formability(the limiting dome height) were studied and the results were compared with the formability of the base material.

Design of Stamping Die for Inner Reinforcement Panel of Automotive (자동차 내부 보강판 성형 금형 설계)

  • Ahn, Dong-Gyu;Song, Dong-Han;Noh, Gyung-Bo;Han, Gil-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.60-68
    • /
    • 2009
  • The objective of this paper is to design stamping die of inner reinforcement panel with DL 950 advanced high strength steel as stamping materials through numerical analyses and experiments. The stamping process was designed as bending dominant process consisting of 1 step of notching and 4 steps of bending processes. In order to obtain a proper design of the stamping die, various three-dimensional elasto-plastic finite element analyses were performed using a commercial code AUTOFORM V4.2. Design parameter of stamping die was chosen as the corner radius of the stamping die for each step. From the results of the FE analysis, feasible corner radii of the stamping die, which can minimize the deviation of corner angle of the stamped part from design data, and forming load for each part were estimated. Stamping experiments were carried out using the manufactured stamping die according to the proposed die design. The results of experiments were shown that the stamping die can successfully manufacture the inner reinforcement panel with DL 950 advanced high strength steel as base stamping material.

  • PDF

A Study on Soil Characteristics of Poorly Vegetation Space for Landscape Remodeling Planning on Apartment Complex (아파트 조경 식생불량공간 리모델링 설계를 위한 토양특성 연구)

  • Han, Seung-Won;Kim, Kwang Jin;Yun, Ji Hye;Jeong, Na Ra;You, Soo Jin
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.1
    • /
    • pp.85-92
    • /
    • 2020
  • The purpose of this study is to provide base information that can be utilized in surveying the status of landscape management within apartment complexes and grasping the conditions of the soil for planting plants, as a way to improve the quality of green spaces by repairing poorly vegetated spaces within apartment complexes and remodeling them with diverse species of plants. Considering that trees and shrubs of equal sizes are simultaneously planted upon the completion of apartment complexes, they were divided based on their completion year at the interval of 5 years and differences in the growth of trees and the components of soil over time were analyzed. Out of the species of trees planted in all the 9 apartment complexes surveyed in this study, the growth of 4 species of needleleaf trees and 4 species of broadleaf trees were surveyed. Juniperus chinensis 'Kaizuka' and Pinus densiflora Siebold & Zucc. out of the needleleaf trees and Malus floribunda Siebold ex Van Houtte out of the broadleaf trees showed the highest growth rate when over 5 years passed after planting and their growth rate decreased when over 10 years passed. Platycladus orientalis and Acer palmatum Thunb. in the apartment complexes that were built over 10 years ago showed the highest growth rate, which indicates that the species require a relatively long period of time for growth. The hardness of the soil at the areas where trees were planted but their soil surface was bare was analyzed. When over 5 years passed after the completion of apartment complexes, over 20 mm of the soil was found to be stamped. The physicochemical properties of soil were also surveyed and the pH level was found to have been continuously high ever since the completion. The organic content in the surveyed soil was about 1/3 of the content in fertile soil, which means that additional fertilization is required. These results indicate that the stamped soil and the health of soil can be restored, when replanting plants in bare areas, by adding plans to improve soil, such as designing drain ways around the planted areas, transporting soil for the 50 cm depth of the ground and mixing organic matters such as chaff, and simply by planting groundcover plants in the lower part of tress and shrubs.

Construction Techniques of Earthen Fortifications in the Hanseong Period of Baekje Kingdom (백제 한성기 토성의 축조기술)

  • LEE, Hyeokhee
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.168-184
    • /
    • 2022
  • This paper examined the construction techniques of the earthen fortifications in the Hanseong Period of Baekje Kingdom, which has been researched most frequently among the Three Kingdoms. The construction processes of the Earthen Fortifications were reviewed and dividing into 'selection of location and construction of the base', 'construction of the wall', and 'finish, extension and repair'. The results show that various techniques were mobilized for building these earthen fortifications. Techniques which were adequate for the topography were utilized for reinforcing the base, and several other techniques were used for constructing the wall. In particular, techniques for wall construction may be clearly divided into those of the fill(盛土) and panchuk(版築) techniques. The fill method has been assumed since the 2000s to have been more efficient than the panchuk technique. This method never uses the structure of the panchuk technique and is characterized by a complex soil layer line, an alternate fill, use of 'earth mound(土堤)'/'clay clod(土塊)', and junctions of oval fill units. The fill method allows us to understand active technological sharing and application among the embankment structures in the period of the Three Kingdoms. The panchuk technique is used to construct a wall using a stamped earthen structure. This technique is divided into types B1 and B2 according to the height, scale, and extension method of the structure. Type B1 precedes B2, which was introduced in the late Hanseong Period. Staring with the Pungnap Earthen Fortification in Seoul, the panchuk technique seems to have spread throughout South Korea. The techniques of the fill and panchuk techniques coexisted at the time when they appeared, but panchuk earthen fortifications gradually dominated. Both techniques have completely different methods for the soil layers, and they have opposite orders of construction. Accordingly, it is assumed that both have different technical systems. The construction techniques of the earthen fortifications began from the Hanseong Period of Baekje Kingdom and were handed down and developed until the Woongjin-Sabi Periods. In the process, it seems that there existed active interactions with other nations. Recently, since studies of the earthen fortifications have been increasing mainly in the southern areas, it is expected that comparative analysis with neighboring countries will be done intensively.