• 제목/요약/키워드: Stainless Steel Plate

검색결과 266건 처리시간 0.023초

A Numerical Study on Performance of Air-to-Air Plastic Plate Heat Exchanger

  • Chung, Min-Ho;Yoo, Seong-Yeon;Han, Kyu-Hyun;Yoon, Hong-Ik;Kang, Hyoung-Chul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권2호
    • /
    • pp.52-60
    • /
    • 2009
  • The purpose of this research is to develop high efficiency plastic plate heat exchangers which can be substituted for conventional aluminum plate heat exchangers. Four simulation models of plastic plate heat exchangers are designed and simulated: that is, flat plate type, turbulent promoter type, corrugate type and dimple type heat exchanger. The flat plate type is designed as the reference model in order to evaluate how much thermal performance increases. The turbulent promoter type is fabricated with cylindrical-type vortex generators and rib-type turbulent promoters. The corrugate type is obtained from the conventional stainless steel compact heat exchangers, which are called the herringbone-type compact heat exchangers. The dimple type has a number of dimples on its surface. In this study, the flow and heat transfer characteristics of the plastic plate heat exchanger are investigated using numerical simulation and compared with experimental results. Numerical simulation is carried out using the FLUENT code. The flows are assumed as a three-dimensional, incompressible and turbulent model. The computational analysis and experimental results both show that the friction coefficient and Nu number is highest in the corrugate type. The tendency of numerical simulation results is in good agreement with that of the experimental results.

골절 치료를 위한 복합재료 고정판 기초 설계 및 특성 평가 (A Basic Design and Characterization on Composite Bone Plate for Bone Fracture Healing)

  • 김주호;장승환
    • Composites Research
    • /
    • 제20권5호
    • /
    • pp.7-12
    • /
    • 2007
  • 본 논문에서는 골절치료의 효율을 높이기 위해 기존에 사용되는 고정판을 복합재료를 이용하여 설계하는 연구를 수행하였다. 복합재료 고정판의 크기와 모양은 기존 시술에 가장 많이 쓰이는 스테인리스 강 고정판의 한 제품과 동일하게 설계하여 연구를 수행하였다. 기존의 스테인리스 강 고정판과 복합재료의 고정판이 골절 부위에 시술되었을 경우 고정판의 재질에 따른 골절 계면부에 발생하는 변형률 분포의 변화를 계산하고 비교하였다. 각각의 계면부의 하중분포와 변형률은 유한요소해석을 통해 계산하였으며, 고정판이 사람의 하지에 시술된 후 환자가 보행하는 경우를 고려하여 하중조건을 부가하였다. 유한요소해석 결과 복합재료 고정판은 골절 부위의 변형률 분포를 보다 고르게 하며, 가골 형성을 촉진할 수 있는 환경을 제공하는 것을 밝혀내었다.

Study of contact melting of plate bundles by molten material in severe reactor accidents

  • J.J. Ma;W.Z. Chen;H.G. Xiao
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4266-4273
    • /
    • 2023
  • In a severe reactor accident, a crust will form on the surface of the molten material during the core melting process. The crust will have a contact melting with the internal components of the reactor. In this paper, the contact melting process of the molten material on the austenitic stainless steel plate bundles is studied. The contact melting model of parabolic molten material on the plate bundles is proposed, and the rule and main effect factors of the contact melting are analyzed. The results show that the melting velocity is proportional to the slope of the paraboloid, the heat flux and the distance between two plates D. The influence of melt gravity and the plate width on melting velocity is negligible. The thickness of the molten liquid film is proportional to the heat flux and plate width, and it is inversely proportional to the gravity. With the increase of D, the liquid film thickness decreases at first and then increases gradually. The liquid film thickness has a minimum against D. When the width of the plate is small, the width of the plate is the main factor affecting the thickness of the liquid film. The parameters are coupled with each other. In a severe reactor accident, the wider internal components of reactor, which can increase the thickness of the melting liquid film and reduce the net input heat flux from the molten material to the components, are the effective measures to delay the melting process.

THE DEVELOPMENT OF SUS 316L BONE PLATE FORGING PROCESS BY COMPUTER SIMULATION TECHNOLOGY

  • Hwang Robert S.;Jou Jin-Long;Wang Kai-Hung;Chen Yi-An
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.36-39
    • /
    • 2003
  • Due to the strength and biocompatibility requirement, the stainless steel SUS 316L is widely used for trauma internal fixation device. SUS 316L can be hardened and strengthened only by cold work. In this work, the material compression test is performed both in laboratory and computer simulation by a FEM analysis software DEFORM to correlate the hardness to strain. This data is then used for preform design and predict the hardness of the finish bone plate forging. Finally, we compared the hardness between the actual forging and computer analysis results. Although the predicted hardness from computer simulation. is 55HV higher than the final forging sample, we can get good compatibility on the hardening tendency of cold forging.

  • PDF

압전 모터 스테이터의 진동 해석 (A Study on the Vibration of an Annular Piezoelectric Motor Stator)

  • 최종운;송오섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.15-21
    • /
    • 1999
  • This study investigates the free and forced vibration characteristics of an annular piezoelectric motor stator constructed of two piezoelectric material layers and one stainless steel layer. The annular piezoelectric motor stator is subjected to a travelling load produced by piezo drive electrical voltage input to the two piezoelectric layers. The stator is modeled as an annular laminated plate based on the classical plate theory and the governing equations are derived via Hamilton's variational principle. Variation of the free vibration characteristics as a function of several design parameters has been studied and based on this result, the forced vibration responses to the input electricity of various frequencies and magnitudes are investigated. The obtained results will provide an important criterion, a priori, in the design of piezoelectric motors.

  • PDF

3 차원 유한요소법을 이용한 AISI 304 표면용접평판의 잔류응력해석 (Residual Stress Analysis of AISI 304 Surface Welding Plate by 3D Finite Element Method)

  • 이경수;김태룡;김만원;박재학
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.390-395
    • /
    • 2008
  • This study is performed to understand three dimensional characteristics of weld residual stress for the surface weld on the stainless steel plate. AISI 304 plate with one path weld on the surface was used as a test specimen. Finite element analysis was done to analyze thermal transient and residual stress due to weld. The result of finite element analysis was validated by previous paper and measurement data. Among various techniques for residual stress measurement, instrumented ball indentation method was applied. The calculated residual stresses by finite element analysis showed good agreement with the measured results.

  • PDF

304 스테인리스강의 Plug 용접성에 관한 연구 (A Study on the Plug Weldability of 304 Stainless Steel)

  • 황종근;장경복;강성수
    • Journal of Welding and Joining
    • /
    • 제16권1호
    • /
    • pp.106-113
    • /
    • 1998
  • In this study, the plug weldability of STS 304 was investigated. The parameters which influence plug weldability were pushing pressure of the plates, position of welding wire and composition of shielding gases. Among these factors, the composition of shielding gases and hole diameter of the upper plate were found to be the major factors influencing weld quality. To evaluate weldability, tensile shear strength of the plug welded specimen was measured and compared with tensile strength of butt welded specimen. Hardness was measured for both plug weld and butt weld. The microstructure of the weld metal and HAZ were also characterized.

  • PDF

왕겨의 물리적 성질 (Physical Properties of Rice Husk)

  • 박승제;김명호;신형명
    • Journal of Biosystems Engineering
    • /
    • 제30권4호
    • /
    • pp.229-234
    • /
    • 2005
  • Kinetic friction coefficient, bulk density, dynamic and static angle of repose, and terminal velocity of rice husk at the moisture range 7 to $23\%$ w.b. were determined. It could lead to better design and operation of the processing machinery and handling facilities. Friction coefficient was determined from the horizontal traction force measured by pulling the container holding a mass of rice husk on various plate materials. Dynamic angle of repose was calculated from the photos of bulk samples piled by gravity flow on a circular platform. Static angle of repose was determined by measuring the side angle of the bulk material which was left in a cylindrical container after natural discharge of the bulk sample through a circular hole in the bottom plate. Kinetic friction coefficients of rice husk were in the range of $0.254\~0.410,\;0.205\~0.520,\;0.229\~0.400,\;and 0.133\~0.420$ on PVC, mild steel, galvanized steel, and stainless steel, respectively. Bulk density, dynamic and static angle of repose, and terminal velocity were in the range of $91.7\~98.3$ $kg/m^3$, $40.2\~47.6^{\circ},\;52.8\~83.7^{\circ},$ and $1.36\~1.73$ m/s, respectively. These physical properties of rice husk increased linearly as the moisture content increased.

주강품 압탕 설계에 체적 수축을 고려한 응고해석의 적용 (Application of Solidification Analysis considering Volumetric Contraction to Riser Design of Steel Castings)

  • 김지준;김기영;최정길;홍준표
    • 한국주조공학회지
    • /
    • 제15권5호
    • /
    • pp.494-506
    • /
    • 1995
  • Test castings in plate, disc, and cubic shaped castings for 0.2wt.% carbon and stainless steel have been poured to examine the effects of the riser dimensions including riser neck on the casting soundness. Three empirical methods were chosen in risering of steel castings. A computer program of solidification analysis considering liquid and solidification contraction was developed to apply for riserdesign calculated by using their methods in plate, disc, and cubic shaped castings, and to calculate the position and dimension of shrinkage cavity in complex shaped casting. The potential of present method has been successfully demonstrated by comparing predicted cavity shapes with those obtained in a series of experimental castings. Three empirical methods can be used in a practical way to make a rapid estimation of tie minimum riser diameter, but they can not provide a criterion of casting soundness with shape and material on all occasions. The shape and position of shrinkage cavity can be successfully predicted both using the present method and using risering calculated by their methods regardless of the shape and cast material.

  • PDF

Effects of Diverse Water Pipe Materials on Bacterial Communities and Water Quality in the Annular Reactor

  • Jang, Hyun-Jung;Choi, Young-June;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.115-123
    • /
    • 2011
  • To investigate the effects of pipe materials on biofilm accumulation and water quality, an annular reactor with the sample coupons of four pipe materials (steel, copper, stainless steel, and polyvinyl chloride) was operated under hydraulic conditions similar to a real plumbing system for 15 months. The bacterial concentrations were substantially increased in the steel and copper reactors with progression of corrosion, whereas those in stainless steel (STS) and polyvinyl chloride (PVC) reactors were affected mainly by water temperature. The heterotrophic plate count (HPC) of biofilms was about 100 times higher on steel pipe than other pipes throughout the experiment, with the STS pipe showing the lowest bacterial number at the end of the operation. Analysis of the 16S rDNA sequences of 176 cultivated isolates revealed that 66.5% was Proteobacteria and the others included unclassified bacteria, Actinobacteria, and Bacilli. Regardless of the pipe materials, Sphingomonas was the predominant species in all biofilms. PCR-DGGE analysis showed that steel pipe exhibited the highest bacterial diversity among the metallic pipes, and the DGGE profile of biofilm on PVC showed three additional bands not detected from the profiles of the metallic materials. Environmental scanning electron microscopy showed that corrosion level and biofilm accumulation were the least in the STS coupon. These results suggest that the STS pipe is the best material for plumbing systems in terms of the microbiological aspects of water quality.