• Title/Summary/Keyword: Staining solutions

Search Result 31, Processing Time 0.021 seconds

Evaluation of Color Stability according to Shade of Temporary Crown Resin Using Digital Spectrophotometer: In Vitro Study

  • Ku, Hye-min;Jun, Mi-Kyoung
    • Journal of dental hygiene science
    • /
    • v.22 no.3
    • /
    • pp.139-147
    • /
    • 2022
  • Background: Temporary crown resins are used prior to prosthesis placement, indicating the importance of aesthetics. The aim of this study was evaluate the color stability of various staining solutions according to the color of temporary crown resins using VITA Easyshade V. Methods: The temporary crowns used were the powder-liquid type and included four shades. A total of 36 specimens were fabricated in the form of disks with a diameter of 1.8 mm and a depth of 2 mm. They were divided into four groups of nine each, and staining was performed for seven days by precipitation in 3 mL of three staining solutions composed of distilled water, black coffee, and red wine. Color and color stability evaluations were performed by a trained examiner using a digital spectrophotometer (VITA Easyshade V). Color stability was analyzed using the ΔE value. Results: Because of the color stability evaluation using the ΔE value, the difference between three and seven days was significant in the specimen I and III groups (p<0.05). Further, post hoc analysis showed that the ΔE value of red wine was significant, indicating that the color stability in red wine was low. The ΔE values in group II between days three and seven were statistically significant (p<0.05). Post hoc analysis showed that distilled water, coffee, and wine had the highest ΔE values on day three. On day seven, the ΔE value for wine was significant, and the color stability was low. There was no significant difference in group IV according to the staining period and staining solution; therefore, color stability was high (p>0.05). Conclusion: This study showed that most temporary resin restorations exhibited color stability in the staining solution. The darker the color of the temporary resin restoration, the higher the color stability against extrinsic staining.

Evaluation of rooster semen quality using CBB dye based staining method

  • Kim, Sung Woo;Lee, Jae-Yeong;Kim, Chan-Lan;Ko, Yeong Gyu;Kim, Bongki
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.55-61
    • /
    • 2022
  • The acrosome cap allows sperm to penetrate the egg membrane and produce male pronuclei within female chicken eggs, facilitating successful fertilization. Given this, it is important to establish practical methods for evaluating the integrity of the acrosome cap and thus the quality of the rooster's sperm. There are several established methods for evaluating the acrosomes of mammalian sperm, but none of these methods are suitable for evaluating the acrosome status of rooster spermatozoa. Therefore, a simplified method for evaluating the rooster acrosome is needed. Here we evaluated the usefulness of CBB (coomassie brilliant blue) staining of the acrosome at concentrations of 0.04%, 0.08%, and 0.3% CBB solutions. Our data revealed a clear staining pattern for intact acrosome caps at 0.04% and 0.08% CBB but not at 0.3% CBB. This protocol revealed differences in acrosome integrity between fresh and frozen rooster sperm smears suggesting that CBB staining may facilitate easier semen evaluation in roosters. This protocol allows for the accurate differential staining of acrosome cap in rooster spermatozoa.

The effects of different polishing techniques on the staining resistance of CAD/CAM resin-ceramics

  • Sagsoz, Omer;Demirci, Tevfik;Demirci, Gamze;Sagsoz, Nurdan Polat;Yildiz, Mehmet
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.417-422
    • /
    • 2016
  • PURPOSE. The purposes of this study were to evaluate the staining resistance of CAD/CAM resin-ceramics polished with different techniques and to determine the effectiveness of the polishing techniques on resin-ceramics, comparing it with that of a glazed glass-ceramic. MATERIALS AND METHODS. Four different CAD/CAM ceramics (feldspathic ceramic: C-CEREC Blocs, (SIRONA) and three resin-ceramics: L-Lava Ultimate, (3M ESPE), E-Enamic, (VITA) and CS-CeraSmart, (GC)) and one light cure composite resin: ME-Clearfil Majesty Esthetic (Kuraray) were used. Only C samples were glazed (gl). Other restorations were divided into four groups according to the polishing technique: nonpolished control group (c), a group polished with light cure liquid polish (Biscover LV BISCO) (bb), a group polished with ceramic polishing kit (Diapol, EVE) (cd), and a group polished with composite polishing kit (Clearfil Twist Dia, Kuraray) (kc). Glazed C samples and the polished samples were further divided into four subgroups and immersed into different solutions: distilled water, tea, coffee, and fermented black carrot juice. Eight samples ($8{\times}8{\times}1mm$) were prepared for each subgroup. According to CIELab system, four color measurements were made: before immersion, immersion after 1 day, after 1 week, and after 1 month. Data were analyzed with repeated measures of ANOVA (${\alpha}=.05$). RESULTS. The highest staining resistance was found in gl samples. There was no difference among gl, kc and cd (P>.05). Staining resistance of gl was significantly higher than that of bb (P<.05). Staining resistances of E and CS were significantly higher than those of L and ME (P<.05). CONCLUSION. Ceramic and composite polishing kits can be used for resin ceramics as a counterpart of glazing procedure used for full ceramic materials. Liquid polish has limited indications for resin ceramics.

Determining the Proportions of Bone and Cartilage Growth in the Crucian Carp (carassius auratus) Using the Modified Simultaneous Differential Staining Technique

  • Lee, Jin-Heon
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.4
    • /
    • pp.337-341
    • /
    • 2010
  • The modified simultaneous differential staining technique, which enables double staining of cartilage and bones, needs to be improved to prevent soft tissues from being damaged during the staining process. Key factors influencing the extent to which soft tissues are damaged include the fixative used, macerating time, potassium hydroxide concentration, incubation temperature and the removal of skin from specimens. Here we describe a protocol that enables the hardening of tissues during bleaching and maceration. We also describe a method for objectively measuring rates of cartilage and bone growth. The use of formalin as a fixative rendered soft tissues more rigid due to the resulting chemical bonds formed between proteins. Blotted specimens were immersed in 1% potassium hydroxide (KOH) and incubated at $37^{\circ}C$ for 1 day (smaller specimens) or 2-3 days (larger specimens). The 1% KOH solution was also used as the diluent solution for the subsequent immersion in a graded series of 30%, 50%, 70%, 90%, 100% glycerol solutions, a procedure that made soft tissues even more transparent and hardened. It was not necessary to remove the skin of specimens shorter than 2 cm, since the macerating solution could easily penetrate their thin skin layer and continuously remove those pigments hindering visibility. Since excessive osmosis is another factor that can damage soft tissues in the macerating process by causing the rupture of those cells not able to withstand the osmotic pressure, here it was minimized by balancing the salt concentration between the interior and exterior of cells with the addition of 0.9% sodium chloride (NaCl) in the macerating solution. Finally, to determine the proportions of cartilage and bone growth, photographs of the stained specimens were taken with a dissecting microscope and sections corresponding to the cartilage and bones were cut out from the printed pictures and weighed. Our results show that this method is suitable for the objective evaluation of bone and cartilage growth.

Color stability of provisional restorative materials with different fabrication methods

  • Song, So-Yeon;Shin, Yo-Han;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.259-264
    • /
    • 2020
  • PURPOSE. The aim of this study was to investigate and compare the color stability of provisional restorative materials fabricated by 3D printing, dental milling, and conventional materials. MATERIALS AND METHODS. For the experimental groups, two commercially available 3D-printing provisional resins (E-Dent 100; EnvisionTEC GmbH, Germany & VeroGlaze™; Stratasys®, USA), two dental milling blocks (PMMA Disk; Yamahachi Dental Co., Japan & Telio®CAD; Ivoclar Vivadent AG, Liechtenstein), and two conventional materials (Alike™; GC Co., Japan & Luxatemp automix plus; DMG, Germany) were used. The water sorption and solubility test were (n=10, respectively) carried out according to ISO4049:2000 (International Standards Organization, Geneva, Switzerland). For the color stability test (n=10), coffee and black tea were used as staining solutions, and the specimens were stored for 12 weeks. Data were analyzed by one-way ANOVA and Tukey's HSD using SPSS version 22.0 (SPSS Inc. Chicago, IL, USA) (P<.05). RESULTS. Alike and Veroglaze showed the highest values and Luxatemp showed the lowest water sorption. In the color stability test, the ΔE of conventional materials varied depending on the staining solution. PMMA milling blocks showed a relatively low ΔE up to 4 weeks, and then significantly increased after 8 weeks (P<.05). 3D-printed materials exhibited a high ΔE or a significant increase over time (P<.05). CONCLUSION. The degree of discoloration increased with time, and a visually perceptible color difference value (ΔE) was shown regardless of the materials and solutions. PMMA milled and 3D-printed materials showed more rapid change in discoloration after 8 weeks.

Effect of irrigants on the color stability, solubility, and surface characteristics of calcium-silicate based cements

  • Selen Kucukkaya Eren;Sevinc Askerbeyli Ors;Hacer Aksel;Senay Canay ;Duygu Karasan
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.10.1-10.11
    • /
    • 2022
  • Objectives: This study aimed to investigate the color stability, solubility, and surface characteristics of 3 calcium silicate-based cements (CSCs) after immersion in different solutions. Materials and Methods: ProRoot white mineral trioxide aggregate (MTA), Biodentine, and Endosequence Root Repair Material (ERRM) were placed in cylindrical molds and stored at 37℃ for 24 hours. Each specimen was immersed in distilled water, 5% sodium hypochlorite (NaOCl), 2% chlorhexidine, or 0.1% octenidine hydrochloride (OCT) for 24 hours. Color changes were measured with a spectrophotometer. Solubility was determined using an analytical balance with 10-5 g accuracy. The surface characteristics were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. Data were analyzed using 2-way analysis of variance, the Tukey test, and the paired t-test. Results: MTA exhibited significant discoloration in contact with NaOCl (p < 0.05). White precipitation occurred on the surfaces of Biodentine and ERRM after contact with the solutions, and none of the materials presented dark brown discoloration. All materials showed significant solubility after immersion in the solutions (p < 0.05), irrespective of the solution type (p > 0.05). The surface topography and elemental composition of the samples showed different patterns of crystal formation and precipitation depending on the solution type. Conclusions: All materials presented some amount of solubility and showed crystal precipitation after contact with the solutions. Biodentine and ERRM are suitable alternatives to ProRoot MTA as they do not exhibit discoloration. The use of OCT can be considered safe for CSCs.

Fluorescence Microscopy of Condensed DNA Conformations of Bacterial Cells

  • Suleymanoglu, Erhan
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.319-326
    • /
    • 2002
  • Cellular DNA in prokaryotes is organized in nucleic acid-protein self-assemblies referred to as the nucleoid. The physical forces responsible for its stability inside the poor solvent properties of the cytoplasm and their functional implications are not understood. Studies on the organisation and functioning of the cytosol of cells largely rely on experimental protocols performed in highly dilute solutions using biochemically purified molecules, which is not a reliable substitute for the situation existing in vivo. Our current research interest is focused on the characterization of biological and physical forces determining the compaction and phase separation of DNA in Escherichia coli cytoplasm. We have emphasized the effect of excluded volume in solutions with high macromolecular concentrations (macromolecular crowding) upon self-association patterns of reactions. The prokaryotic cytosol was simulated by addition of inert polymer polyethylene glycol (PEG) (average molecular weight 20000), as an agent which afterwards facilitates the self-association of macromolecules. Fluorescence microscopy was used for direct visualization of nucleoids in intact cells, after staining with DAPI (4',6-diamidino-2-phenylindole dihydrochloride). Addition of the crowding agent PEG 20,000, in increasing concentrations generated progressively enhanced nucleoid compaction, the effect being stronger in the presence of 0.2 M NaCl and 5 mM MgCl$\_$2/. Under these conditions, the nucleoids were compacted to volumes of around 2 ㎛$\^$3/ or comparable sizes with that of living cells.

Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds

  • Suzuki, Mitsuteru;Tandon, Pramod;Ishikawa, Masaya;Toyomasu, Takayuki
    • Plant Biotechnology Reports
    • /
    • v.2 no.2
    • /
    • pp.123-131
    • /
    • 2008
  • Vitrification methods are convenient for cryopreserving plant specimens, as the specimens are plunged directly into liquid nitrogen (LN) from ambient temperatures. However, tissues and species with poor survival are still not uncommon. The development of vitrification solutions with high survival that cover a range of materials is important. We attempted to develop new vitrification solutions using bromegrass cells and found that VSL, comprising 20% (w/v) glycerol, 30% (w/v) ethylene glycol, 5% (w/v) sucrose, 10% (w/v) DMSO and 10 mM $CaCl_2$, gave the highest survival following cryopreservation, as determined by fluorescein diacetate staining. However, the cryopreserved cells showed little regrowth, for unknown reasons. To check its applicability, VSL was used to cryopreserve gentian axillary buds and the performance was compared with those of conventional vitrification solutions. Excised gentian stem segments with axillary buds (shoot apices) were two-step precultured with sucrose to induce osmotic tolerance prior to cryopreservation. Gentian axillary buds cryopreserved using VSL following the appropriate preculturing approach exhibited 78% survival (determined by the regrowth capacity), which was comparable to PVS2 and PVS1 and far better than PVS3. VSL had a wider optimal incubation time (20-45 min) than PVS2 and was more suitable for cryopreserving gentian buds. The optimal duration of the first step of the preculture was 7-11 days, and preculturing with sucrose and glucose gave a much higher survival than fructose and maltose. VSL was able to vitrify during cooling to LN temperatures, as glass transition and devitrification points were detected in the warming profiles from differential scanning calorimetry. VSL and its derivative, VSL+, seem to have the potential to be good alternatives to PVS2 for the cryopreservation of some materials, as exemplified by gentian buds.

Physicochemical properties, cytotoxicity and penetration into dentinal tubules of sodium hypochlorite with and without surfactants

  • Hernan Coaguila-Llerena;Isadora Barbieri ;Mario Tanomaru-Filho ;Renato de Toledo Leonardo;Ana Paula Ramos ;Gisele Faria
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.47.1-47.11
    • /
    • 2020
  • Objectives: The aim of this study was to assess the physicochemical properties, cytotoxicity and penetration into dentinal tubules of ChlorCidTM Surf (3% sodium hypochlorite [NaOCl] with surfactant) in comparison to ChlorCidTM (3% NaOCl without surfactant). Materials and Methods: The physicochemical properties evaluated were pH, surface tension, free available chlorine (FAC) and contact angle. Cytotoxicity was evaluated in L929 fibroblasts exposed to the solutions by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red assays. Assessment of penetration into dentinal tubules was performed by staining single-rooted permanent human teeth with crystal violet (n = 9), which were irrigated with the solutions and analyzed in cervical, middle and apical segments. Data were analyzed by one-way analysis of variance (ANOVA) and Tukey's post-test, 2-way ANOVA and Bonferroni's post-test or t-test (α = 0.05). Results: ChlorCidTM Surf and ChlorCidTM FAC values were close to those indicated by the manufacturer. ChlorCidTM Surf showed lower surface tension and contact angle on dentin, and higher pH than ChlorCidTM (p < 0.05). The penetration of ChlorCidTM Surf was higher in cervical and middle segments, compared with ChlorCidTM (p < 0.05). There was no difference in irrigant cytotoxicity (p > 0.05). Conclusions: ChlorCidTM Surf showed lower surface tension, lower contact angle on root canal dentin, higher penetration into dentinal tubules and more alkaline pH, compared with ChlorCidTM. However, both solutions showed similar cytotoxicity and FAC content.

Long-Term Starvation Induces the Viable-but-Nonculturable Condition in Lactobacillus crispatus KLB46

  • Lee, Seok-Yong;Kim, Ju-Hyeon;Jang, Jeong-Eun;Kim, Seung-Cheol;Yun, Hyeon-Sik;So, Jae-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.918-922
    • /
    • 2001
  • In a previous study, we have isolated a number of lactobacilli from Korean women, and one of them (KLB46) was identified as Lactobacillus crispatus by 16S rRNA gene sequencing. For the ecological treatment of bacterial vaginosis (BV) cell suspension of L. crispatus KLB46 was instillated into BV patients. L. crispatus KLB46 was found to persist for several days in cell suspension with no nutrients. In this study, in order to assess the influence of starvation on physiological activity, we compared the viability and culturability of KLB46 following suspension in various buffer solutions. A pair of in situ fluorescent dye was used to assess viability (i.e. membrane integrity) and the culturability was examined by plate count assay. A rapid epifluorescence staining method using the LIVE/DEAD Bacterial Viability Kit $(BacLight^{TM})$ was applied to estimate both viable and total counts of bacteria in cell suspension. $BacLight^{TM}$ is composed of two nucleic acid-binding stains ($SYTO\;9^{TM}$ and propidium iodide). $SYTO\;9^{TM}$ penetrates all bacterial membranes and stains the cells green while propidium iodide only penetrates cells with damaged membranes, therefore the combination of the two stains produces red fluorescing cells. Optimal staining conditions for $BacLight^{TM}$ were found to be with 0.0835M $SYTO\;9^{TM}$ and 0.05M propidium iodide for 15 min incubation at room temperature in dark. When cells were microscopically examined during 140 hours of starvation, the culturability decreased markedly while the viability remained relatively constant, which suggests that large fraction of KLB46 cells became viable but non-culturable (VBNC) upon starvation.

  • PDF