Browse > Article
http://dx.doi.org/10.12750/JARB.37.1.55

Evaluation of rooster semen quality using CBB dye based staining method  

Kim, Sung Woo (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Lee, Jae-Yeong (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Kim, Chan-Lan (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Ko, Yeong Gyu (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Kim, Bongki (Department of Animal Resources Science, Kongju National University)
Publication Information
Journal of Animal Reproduction and Biotechnology / v.37, no.1, 2022 , pp. 55-61 More about this Journal
Abstract
The acrosome cap allows sperm to penetrate the egg membrane and produce male pronuclei within female chicken eggs, facilitating successful fertilization. Given this, it is important to establish practical methods for evaluating the integrity of the acrosome cap and thus the quality of the rooster's sperm. There are several established methods for evaluating the acrosomes of mammalian sperm, but none of these methods are suitable for evaluating the acrosome status of rooster spermatozoa. Therefore, a simplified method for evaluating the rooster acrosome is needed. Here we evaluated the usefulness of CBB (coomassie brilliant blue) staining of the acrosome at concentrations of 0.04%, 0.08%, and 0.3% CBB solutions. Our data revealed a clear staining pattern for intact acrosome caps at 0.04% and 0.08% CBB but not at 0.3% CBB. This protocol revealed differences in acrosome integrity between fresh and frozen rooster sperm smears suggesting that CBB staining may facilitate easier semen evaluation in roosters. This protocol allows for the accurate differential staining of acrosome cap in rooster spermatozoa.
Keywords
acrosome; CBB; rooster; spermatozoa; staining;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Schenk JL. 2018. Review: principles of maximizing bull semen production at genetic centers. Animal 12(s1):s142-s147.   DOI
2 Sieme H, Oldenhof H, Wolkers WF. 2015. Sperm membrane behaviour during cooling and cryopreservation. Reprod. Domest. Anim. 50 Suppl 3:20-26.
3 Talbot P and Chacon R. 1980. A new procedure for rapidly scoring acrosome reactions of human sperm. Gamete Res. 3:211-216.   DOI
4 Thelie A, Bailliard A, Seigneurin F, Zerjal T, Tixier-Boichard M, Blesbois E. 2019. Chicken semen cryopreservation and use for the restoration of rare genetic resources. Poult. Sci. 98:447-455.   DOI
5 Watson PF. 2000. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 60-61:481-492.   DOI
6 Wishart GJ. 1985. Quantitation of the fertilising ability of fresh compared with frozen and thawed fowl spermatozoa. Br. Poult. Sci. 26:375-380.   DOI
7 Zhang YX, Ping SH, Yang SH. 2012. [Morphological characteristics and cryodamage of Chinese tree shrew (Tupaia belangeri chinensis) sperm]. Dongwuxue Yanjiu 33:29-36.
8 Siudzinska A and Lukaszewicz E. 2008. Effect of semen extenders and storage time on sperm morphology of four chicken breeds. J. Appl. Poult. Res. 17:101-108.   DOI
9 Pommer AC, Rutllant J, Meyers SA. 2002. The role of osmotic resistance on equine spermatozoal function. Theriogenology 58:1373-1384.   DOI
10 Pena FJ, Garcia BM, Samper JC, Aparicio IM, Tapia JA, Ferrusola CO. 2011. Dissecting the molecular damage to stallion spermatozoa: the way to improve current cryopreservation protocols? Theriogenology 76:1177-1186.   DOI
11 Rui BR, Angrimani DSR, Losano JDA, Bicudo LC, Nichi M, Pereira RJG. 2017. Validation of simple and cost-effective stains to assess acrosomal status, DNA damage and mitochondrial activity in rooster spermatozoa. Anim. Reprod. Sci. 187:133-140.   DOI
12 Santiago-Moreno J, Esteso MC, Villaverde-Morcillo S, Toledano-Deaz A, Castano C, Velazquez R, Lopez-Sebastian A, Goya AL, Martinez JG. 2016. Recent advances in bird sperm morphometric analysis and its role in male gamete characterization and reproduction technologies. Asian J. Androl. 18:882-888.   DOI
13 Ahammad MU, Nishino C, Tatemoto H, Okura N, Okamoto S, Kawamoto Y, Nakada T. 2013. Acrosome reaction of fowl sperm: evidence for shedding of the acrosomal cap in intact form to release acrosomal enzyme. Poult. Sci. 92:798-803.   DOI
14 Villaverde-Morcillo S, Esteso MC, Castano C, Toledano Diaz A, Lopez-Sebastian A, Campo JL, Santiago-Moreno J. 2015. Influence of staining method on the values of avian sperm head morphometric variables. Reprod. Domest. Anim. 50:750-755.   DOI
15 Wolf DP, Boldt J, Byrd W, Bechtol KB. 1985. Acrosomal status evaluation in human ejaculated sperm with monoclonal antibodies. Biol. Reprod. 32:1157-1162.   DOI
16 Kohn FM, Mack SR, Schill WB, Zaneveld LJ. 1997. Detection of human sperm acrosome reaction: comparison between methods using double staining, Pisum sativum agglutinin, concanavalin A and transmission electron microscopy. Hum. Reprod. 12:714-721.   DOI
17 Mazur P. 1984. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247(3 Pt 1):C125-C142.   DOI
18 Mota PC and Ramalho-Santos J. 2006. Comparison between different markers for sperm quality in the cat: Diff-Quik as a simple optical technique to assess change in the DNA of feline epididymal sperm. Theriogenology 65:1360-1375.   DOI
19 Partyka A, Nizanski W, Lukaszewicz E. 2010. Evaluation of fresh and frozen-thawed fowl semen by flow cytometry. Theriogenology 74:1019-1027.   DOI
20 Feyzi S, Sharafi M, Rahimi S. 2018. Stress preconditioning of rooster semen before cryopreservation improves fertility potential of thawed sperm. Poult. Sci. 97:2582-2590.   DOI
21 Chalah T and Brillard JP. 1998. Comparison of assessment of fowl sperm viability by eosin-nigrosin and dual fluorescence (SYBR-14/PI). Theriogenology 50:487-493.   DOI
22 Correa LM, Thomas A, Meyers SA. 2007. The macaque sperm actin cytoskeleton reorganizes in response to osmotic stress and contributes to morphological defects and decreased motility. Biol. Reprod. 77:942-953.   DOI
23 Chalah T, Seigneurin F, Blesbois E, Brillard JP. 1999. In vitro comparison of fowl sperm viability in ejaculates frozen by three different techniques and relationship with subsequent fertility in vivo. Cryobiology 39:185-191.   DOI
24 Chan PJ, Corselli JU, Jacobson JD, Patton WC, King A. 1999. Spermac stain analysis of human sperm acrosomes. Fertil. Steril. 72:124-128.   DOI
25 Lee MA, Trucco GS, Bechtol KB, Wummer N, Kopf GS, Blasco L, Storey BT. 1987. Capacitation and acrosome reactions in human spermatozoa monitored by a chlortetracycline fluorescence assay. Fertil. Steril. 48:649-658.   DOI
26 Gliozzi TM, Zaniboni L, Cerolini S. 2011. DNA fragmentation in chicken spermatozoa during cryopreservation. Theriogenology 75:1613-1622.   DOI
27 Horrocks AJ, Stewart S, Jackson L, Wishart GJ. 2000. Induction of acrosomal exocytosis in chicken spermatozoa by inner perivitelline-derived N-linked glycans. Biochem. Biophys. Res. Commun. 278:84-89.   DOI
28 Larson JL and Miller DJ. 1999. Simple histochemical stain for acrosomes on sperm from several species. Mol. Reprod. Dev. 52:445-449.   DOI
29 Mehaisen GMK, Partyka A, Ligocka Z, Nizanski W. 2020. Cryoprotective effect of melatonin supplementation on postthawed rooster sperm quality. Anim. Reprod. Sci. 212:106238.   DOI
30 Menkveld R, Holleboom CA, Rhemrev JP. 2011. Measurement and significance of sperm morphology. Asian J. Androl. 13:59-68.   DOI