• Title/Summary/Keyword: Stagnation Region

Search Result 132, Processing Time 0.024 seconds

Study on Film Boiling Heat Transfer of Spray Cooling in Dilute Spray Region (희박 분무영역에서의 분무냉각 막 비등 열전달에 관한 연구)

  • Kim Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.279-286
    • /
    • 2005
  • This study presents experimental results on the heat transfer coefficients in the film boiling region of spray cooling for actual metallurgical process. In this study, the heat flux distributions of a two dimensional dilute spray impinging on a hot plate were experimentally investigated. A stainless steel block was cooled down from intial temperature of about $800^{\circ}C$ by twin fluid (air-water) flat spray. It was found from the experimental results that the heat transfer area was classified into the stagnation region and wall-flow region. In the stagnation region, the experimental data of local heat transfer coefficient was closely correlated with the local droplet-flow-rate supplied from the spray nozzle directly. Thus, the local heat transfer coefficients are in good agreement with the predicted values from the correlations proposed by our previous study. In wall-flow region, however, remarkable differences are observed between experimental data and predicted values because the number of rebound droplets increase with increasing the distance from the stagnation point.

Study on Film Boiling Heat Transfer of Spray Cooling in Dilute Spray Region (희박 분무영역에서의 분무냉각 막비등 열전달에 관한 연구)

  • Kim, Yeung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1481-1486
    • /
    • 2004
  • This report presents experimental results on the heat transfer coefficients in the boiling region of spray cooling for actual metallurgical process. In this study, the heat flux distribution of a two dimensional dilute spray impinging on hot plate was experimentally investigated. Based on the experimental results, they classified the heat transfer area into the stagnation region and wall-flow region. In the stagnation region, the local heat transfer coefficient relates mainly to the droplet-flow-rate supplied from spray nozzle directly, so the local heat transfer coefficients is good agreement with the predicted values from correlation for spray cooling proposed by former report However, the local heat transfer coefficient in wall-flow region is larger than predicted values, and it is found that the rebounding droplets-flow-rate must be accurately evaluated to predict the local heat transfer coefficient in this region.

  • PDF

Experimental Study on the Heat Transfer of Supersonic Impinging Jet (초음속충돌제트의 열전달에 관한 실험적 연구)

  • Lee, Chan;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.323-327
    • /
    • 1991
  • An experiment was conducted to determine the local heat transfer from a supersonic hot jet impinging at 45.deg. to a plate surface. A semi-analytic method was used to determine the Nusselt number from experimental data. The results indicates that the location of the peak heat transfer is displaced from the geometric center of the axisymmetric jet and that the radial variation of the local heat transfer is steeper than that in the subsonic impinging jet. In the stagnation region, the heat transfer from the supersonic impinging jet is about 10 times larger than that from the subsonic one, while the heat transer away from the stagnation region is of the same magnitude as that of the in compressible turbulent radial wall jet.

An Experimental Study on Heat Transfer and Fluid Flow on the Semi-Circular Concave Surface Cooled by Jet Impingement (제트충돌냉각되는 반원 오목면에서 열전달 및 유체유동에 관한 실험적 연구)

  • Yu, Han-Seong;Yang, Geun-Yeong;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2991-3006
    • /
    • 1996
  • An experimental study of jet flow and heat transfer has been carried out for the jet impingement cooling on a semi-circular concave surface. For the jet impingement on the concave surface, three different regions-free jet region, stagnation region, and wall jet flow region-exist, and the distributions of mean velocity and fluctuating velocity for each region have been measured by Laser Doppler Velocimeter. Of particular interests are the effects of jet Reynolds number, the distance between the nozzle exit and cooling surface apex, and the distance from the stagnation point in the circumferential direction. The resulting characteristics of heat transfer at the stagnation point and the variation of heat transfer along the circumferential direction including the existence of secondary peak have been explained in conjunction with measured impinge jet flow.

A study on the local heat transfer in rectangular impinging water jet cooling system (장방형 충돌수분류 냉각계의 국소열전달에 관한 연구)

  • Lee, Jong-Su;Eom, Gi-Chan;Choe, Guk-Gwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1395-1405
    • /
    • 1996
  • The purpose of this experimental research is to investigate the local heat transfer characteristics in the upward free water jet impinged on a downward flat plate of uniform heat flux. The inner shape of rectangular nozzle used was sine curve type and its contraction ratio of inlet to outlet area was five. Experimental parameters considered were Reynolds number, nozzle exit-flat plate distance, and level of supplementary water. Local Nusselt number was influenced by Reynolds number, Prandtl number, supplementary water level, and distance between the nozzle exit and flat plate. Within the impingement region, the Nusselt number has a maximum value on the nozzle center axis and decreases monotonically outward from center. Outside of the impingement region, on the other hand, the Nusselt number has a secondary peak near the position where the distance from nozzle center reaches four times the nozzle width. However if nozzle exit velocity exceeds 6.2 m/s, the secondary peak appears also in the impingement region. The empirical equation for the stagnation heat transfer is a function of Prandtl, Reynolds, and axial distance from the nozzle exit. The optimum level of supplementary water to augment the heat transfer rate at stagnation point was found to be twice the nozzle width.

A Study on the Flow Characteristics of a Two - Dimensional Oblique Plate Impinging Jet (경사진 평판에서 2차원 충돌 제트의 유동 특성에 관한 연구)

  • 윤순현;김경문;김대성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.37-42
    • /
    • 1997
  • Turbulent flow characteristics of a two - dimensional oblique plate impinging jet(OPIJ) were experimentally investigated. The jet mean velocity and turbulent intensity profIles were also measured along the plate. The jet Reynolds numbers(Re, based on the nozzle width)ranged from 10, 000 to 35, 000, the nozzle - to - plate distance(H/B) from 2 to 16, and the oblique angle (a) from 60 to 90 degree. It has been found that the stagnation point shifted toward the minor flow region as the oblique angle decreases and the position of the stagnation point nearly coin¬cided with that of the maximum turbulent intensity.

  • PDF

A Study on the Heat Transfer Characteristics on Flat Plate Surface by Two-dimensional Impinging Air Jet (평판전열면(平板傳熱面)에 충돌(衝突)하는 2차원충돌분류계(二次元衝突噴流系)의 열전달특성(熱傳達特性)에 관(關)한 연구(硏究))

  • Lee, Y.H.;Kim, S.P.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • The purpose of this study is to investigate the heat transfer characteristics and the flow structure in the case of rectangular air jet impinging vertically on the flat heating surface. The maximum value of Nusselt number at stagnation point is observed at H/B=10. It is found that this trend has been caused by the effect of stretching of large scale vortex in the stagnation region. For potential core region the Nusselt number distribution in the downstream of the stagnation point decreases gradually and begins to increase at about X/B=3. From the flow visualization it could be seen that small eddy produced from the nozzle edge grows in large scale and that large scale eddy disturbed the thermal boundary layer on the heating plate. The local average Nusselt number becomes maximum at X/B=0.5 regardless of H/B variation.

  • PDF

CHANGES IN STAGNATION REGION AND RESIDENCE TIME OF COOLING WATER FOR VARIOUS FLOW CHANNEL GEOMETRY OF WATER COOLING GRATE (수냉식 화격자 유로 형상에 따른 냉각수의 정체 영역 및 체류 시간 변화)

  • Song, D.K.;Kim, S.B.;Park, D.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.106-111
    • /
    • 2016
  • Waste-to-energy facilities including incinerators are known as an efficient method to reduce wastes. In waste-to-energy facilities, more efficient cooling system is still needed for grates as the energy density of waste increased. For better cooling performance with the water-cooled grates, optimal design of cooling water pathways is highly beneficial. We performed numerical investigation on fluid flow and residence time of cooling water with change of the geometry of the cooling water pathway. With addition of round shaped guide vanes in the water pathway, the maximum residence time of flow is reduced(from 4.3 sec. to 2.4 sec.), but there is no significant difference in pressure drop between inlet and outlet, and average residence time at the outlet. Furthermore the flow stagnation region moves to the outlet, as the position of the round shaped guide vanes is located to the neck point of pathways.

Heat Transfer of a Two-Dimensional Jet Impinging on the Wall with Transverse Repeated Ribs of Square Cross-Section (四角리브를 갖는 傳熱面에 衝突하는 2次元 噴流의 熱傳達에 관한 硏究)

  • 김상필;서정윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.214-221
    • /
    • 1987
  • The purpose of this study is augmentation of heat transfer without additional power in the case of rectangular air jet which impinges vertically on the heating surface. The experimental results are obtained heat transfer augmentation of a two-dimensional impinging jet using the surface roughness of transverse repeated-rib type. The integral average heat transfer coefficient of ribbed plate is about two times larger than that of flat plate. In order to supplement the information about the mechanism of heat transfer augmentation, the flow structure in the stagnation region is visually studied by using the smoke wire technique. The heat transfer augmentation is due to the effect of stretching of large scale vortex in the stagnation region.

A Study on the Heat Transfer Augmentation by Using Wire-mesh Impinging Water Jet (충돌수분류계(衝突水噴流系)에서 와이어 메쉬를 사용(使用)한 열전달(熱傳達) 증진(增進)에 관(關)한 연구(硏究))

  • Na, G.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.291-301
    • /
    • 1994
  • This paper presents the promotion of heat transfer through the use of wire-mesh screens. To improve heat transfer in an impingement water system, the wire-mesh screens are installed between the nozzle-to-heater surfaces. When the wire-mesh screens are not employed, this report exhibits the maximum heat transfer and the secondary maximum value at the stagnation point. But in case of using the wire-mesh screens, the transfer coefficient value of maximum heat exists at the stagnation point, and the second maximum value doesn't occur. Therefore, the heat transfer is more improved than 4~6 times that of the mean Nusselt numbers of simple water jet system, Also, within the region presented in this study, the heat transfer was promoted by using the wire-mesh screens at the stagnation point ; thus, the heat transfer was more increased than 6-7. 5 times that of simple water jet system.

  • PDF