• Title/Summary/Keyword: Stacking sequence

Search Result 293, Processing Time 0.026 seconds

Optimal design of the co-cured aluminum/composite double lap joint (탄소섬유/에폭시 복합재료-알루미늄 양면겹치기 동시경화 조인트의 최적설계)

  • Park Sang Wook;Kim Hak Sung;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.78-82
    • /
    • 2004
  • The co-cured joint has been widely used in joining process of composite structures due to its simple and easy manufacturing process. In this paper, the effect of stacking sequence of the carbon epoxy prepreg, bonding length and thickness of the aluminum plate on the static tensile load capability of the co-cured aluminum-composite double lap joint were experimentally investigated. From experimental results, the optimum EA ratios with respect to stacking sequence and bonding length of the co-cured joint were obtained, which may be useful for the joining of hybrid structures.

  • PDF

A study on the prediction of the joint strength using the failure area index method (파괴면적지수법을 이용한 조인트 강도 예측에 관한 연구)

  • 전영준;최진호;권진회;양승운;김광수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.106-109
    • /
    • 2002
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joint have become a very important research area because they are often the weakest areas in composite structures. In this paper, the failure area index method to predict the strength of the mechanically fastened composite joint which has the same stacking sequence was used and evaluated. By the used failure area index method, the strength of the mechanically fastened composite joint which has the specimen of different shape and stacking sequence could be predicted within 9.96%.

  • PDF

Determination of Mode I Fracture Toughness of Fiber Reinforced Composites by the Elastic Work Factor (섬유강화 복합재의 $G_ {IC}$ 결정을 위한 일인자방법)

  • Lee, Gyeong-Yeop;Go, Seung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3491-3497
    • /
    • 1996
  • The work factor approach was applied to determine $G_ {IC}$ of fiber reinforced composites (AS4/3501) from a single unidirectional (0-deg) DCB specimen. Elastic work factors of DCB specimen for three different symmetrical staking sequences were derived from a simple bending theory and a finite element method. The results showed that elastic work factors calculated from both methods were comparable each other. In particular, the elastic work factor of DCB specimen with symmetrical stacking sequence is independent of stacking sequence. The $G_ {IC}$ determined from the work factor approach was compared with that determined by the compliance method. The results showed that the work factor approach and the compliance method produce comparable results of $G_ {IC}$. Thus, $G_ {IC}$ can be determined from a single DCB specimen using the work factor approach.

A Study on the Grinding Characteristics of the Carbon Fiber Epoxy Composite Materials with the Vitrified Bonded Wheel (탄소섬유 에폭시 복합재료 연삭숫돌 선정에 관한 연구)

  • 한흥삼
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.44-49
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently requires cutting or grinding due to the dimensional inaccuracy for precision machine elements. The surface roughness and cutting force were also measured to investigate the surface grinding characteristics of the composites using the vitrified bonded wheel (WA, GC). The experiments were performed dry grinding conditions with respect to cutting speed, feed speed, depth of cut of the stacking sequence $[O]_{nT.}$ From the experimental investigation, the optimal conditions both the vitrified bonded wheel WA and GC for the surface grinding are suggested.

  • PDF

Response of dynamic interlaminar stresses in laminated plates under free vibration and thermal load

  • Zhu, S.Q.;Chen, X.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.753-765
    • /
    • 2007
  • The response histories and distribution of dynamic interlaminar stresses in composite laminated plates under free vibration and thermal load is studied based on a thermoelastodynamic differential equations. The stacking sequence of the laminated plates may be arbitrary. The temperature change is considered as a linear function of coordinates in planes of each layer. The dynamic mode of displacements is considered as triangle series. The in-plane stresses are calculated by using geometric equations and generalized Hooke's law. The interlaminar stresses are evaluated by integrating the 3-D equations of equilibrium, and utilizing given boundary conditions and continuity conditions of stresses between layers. The response histories and distribution of interlaminar stress under thermal load are presented for various vibration modes and stacking sequence. The theoretical analyses and results are of certain significance in practical engineering application.

Intra-ply, inter-ply and FG hybrid composites based on basalt and poly-ester fibers: Flexural and impact properties

  • Ehsan Fadayee Fard;Hassan Sharifi;Majid Tehrani;Ehsan Akbari
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.67-81
    • /
    • 2023
  • Basalt and poly-ester fibers along with epoxy resin were used to produce inter-ply, intra-ply and functionally gradient hybrid composites. In all of the composites, the relative content of basalt fiber to poly-ester fiber was equal to 50 percent. The flexural and charpy impact properties of the hybrid composites are presented with particular regard to the effects of the hybrid types, stacking sequence of the plies, loading direction and loading speed. The results show that with properly choosing the composition and the stacking sequence of the plies; the inter-ply hybrid composites can achieve better flexural strength and impact absorption energy compared to the intra-ply and functionally gradient composites. The flexural strength and impact absorption energy of the functionally gradient hybrid composites is comparable to, or higher than the intra-ply sample. Also, by increasing the loading speed, the flexural strength increases while the flexural modulus does not have any special trend.

The Penetration Characteristics of CFRP Laminated Shells on the Change of Stacking Sequences and Curvatures (적층구성 및 곡률 변화에 따른 CFRP 적층쉘의 관통특성)

  • Cho, Young-Jea;Kim, Young-Nam;Yang, In-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.79-85
    • /
    • 2006
  • CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structural materials for vehicle, has a wide application in light-weigh structural materials of airplanes, ships and automobiles because of high strength and stiffness, However, there is a design variable to be considered in practical application of the laminate composite materials, these materials are vulnerable to transverse impact. This paper is to study the effects of stacking sequence and curvature on the penetration characteristics of composite laminate shell. They are stacked to $[0_3/90_3]S,\;[90_3/0_3]s\;and\;[0_2/90_3/0]s,\;[90_2/0_3/90]s$ and their interlaminar number two and four. They are manufactured to various curvature radius (R=100, 150, 200mm and $\infty$), When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determing the time for it to pass two ballistics-screen sensors located a known distance apart. The critical penetration energy of specimen A and B with less interfaces were a little higher than those of C and D. As the curvature increases, the critical penetration energy increases linearly because the resistance to the in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. The specimen A and C have higher critical penetration energy than B and D because of different stacking sequences. We examined crack length through a penetration test. For the specimen A with 2interfaces, the longest circumferential direction crack length were observed on the first interface from the impact point. For the specimen B 4-interface, the longest circumferential direction crack length were observed on the second interface from the impact point.

Stacking Sequence Effects on Indentation Damage Behaviors of Fiber Metal Laminate (섬유의 적층 각도에 따른 섬유 금속 적층판의 압입 손상 거동)

  • Han, Gyeong-Seop;Nam, Hyeon-Uk;Jeong, Seong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.960-968
    • /
    • 2002
  • In this research, the effects of fiber stacking sequence on damage behaviors of FML(Fiber Metal Laminates) subject to indentation loading. SOP (Singly Oriented Ply) FML and angle ply FML were fabricated to study fiber orientation effects and angle ply effects. FML were fabricated by using 1050 aluminum laminate and carbon/epoxy prepreg. To increase adhesive bonding strength, Al laminate was etched using FPL methods. The static indentation test were conducted by using UTM under the 2side clamped conditions. During the tests, load and displacement curve and crack initiation and propagation behaviors were investigated. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. However, the macro-crack of angle ply FML was initiated by fiber breakage of lower ply because angle plies in Angle ply FML prevents the crack growth and consolidation. The Angle ply FML has a critical cross-angle which prevent crack growth and consolidation. Damage behavior of Angle ply FML is changed around the critical cross-angle.

Optimal Design of the Stacking Sequence on a Composite Fan Blade Using Lamination Parameter (적층 파라미터를 활용한 복합재 팬 블레이드의 적층 패턴 최적설계)

  • Sung, Yoonju;Jun, Yongun;Park, Jungsun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.411-418
    • /
    • 2020
  • In this paper, approximation and optimization methods are proposed for the structural performance of the composite fan blade. Using these methods, we perform the optimal design of the stacking sequence to maximize stiffnesses without changing the mass and the geometric shape of the composite fan blade. In this study, the lamination parameters are introduced to reduce the design variables and space. From the characteristics of lamination parameters, we generate response surface model having a high fitness value. Considering the requirements of the optimal stacking sequence, the multi-objective optimization problem is formulated. We apply the two-step optimization method that combines gradient-based method and genetic algorithm for efficient search of an optimal solution. Finally, the finite element analysis results of the initial and the optimized model are compared to validate the approximation and optimization methods based on the lamination parameters.

An Experimental Study on the Strength of Composite-to-Aluminum Hybrid Single-Lap Joints (복합재-알루미늄 단일겹침 하이브리드 체결부 강도 특성 실험 연구)

  • Kim, Jung-Jin;Seong, Myeong-Su;Kim, Hong-Joo;Cha, Bong-Keun;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.841-850
    • /
    • 2008
  • Strength and failure of composite-to-aluminum rivetted, bonded, and rivet/bonding hybrid single-lap joints were investigated by experiment. A total of 82 joint specimens were tested with 3 different overlap lengths and 2 types of stacking sequence. FM73m adhesive film and NAS9308-4-03 rivet were used for hybrid joints. While failure loads of the bonded and hybrid joints increased as the overlap length increased, failure loads of the rivetted joints were not affected by the overlap length. Effect of the stacking sequence was not remarkable in the simple bonded or rivetted joints. Failure loads of the hybrid joints, however, showed the maximum of 30% difference depending on the stacking sequence. Major failure mode of the bonded and hybrid joints was the delamination of the composite adherend and failure mode of riveted joints was the rivet failure with local bearing.