• 제목/요약/키워드: Stacking sequence

검색결과 295건 처리시간 0.022초

인공발(Prosthetic Foot) 스프링용 유리섬유강화 적층재의 적층배향에 따른 층간분리거동 해석 (Analysis of Delamination Behavior on the Stacking Sequence of Prosthetic Foot Keel in Glass fiber Reinforced Laminates)

  • 송삼홍;김철웅
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.623-631
    • /
    • 2003
  • It is considered that the application of advanced composite materials to the prostheses for the disables is important to improve their bio-mechanical performance. Particularly, energy storing foot prosthesis is mostly important to restore gait ability of the disables with low-extremity amputation since it could provide propulsion at terminal stance enhancing the disables ability to walk long distance even run and jump. Therefore, the energy storing spring of Prosthetic foot keel under cyclic bending moment use mainly of high strength glass fiber reinforced plastic. The main objective of this study was to evaluate the stacking sequence effect using the delamination growth rate(dA$_{D}$/dN) of energy storing spring in glass fiber reinforced plastic under cyclic bending moment. The test results indicated that the shape of delamination zone depends on stacking sequence in GFRP laminates. Delamination area(A$_{D}$) turns out that variable types with the contour increased non-linearly toward the damage zones.nes.

IIHS 충격해석에 근거한 구간 조합 복합재료 범퍼 빔 개발 (Development of the Piecewisely-integrated Composite Bumper Beam Based on the IIHS Crash Analysis)

  • 정찬희;함석우;김경석;전성식
    • Composites Research
    • /
    • 제31권1호
    • /
    • pp.37-41
    • /
    • 2018
  • 본 연구에서는 IIHS기준 범퍼 충돌해석을 통하여, 구간 조합 복합 범퍼 빔의 특성 분석하였다. 충돌 시 범퍼 빔의 5개 영역에서 지배적인 하중 유형에 대한 정보를 얻기 위해 Al 범퍼 빔에 대한 IIHS 범퍼 충돌 해석이 진행되었다. 또한, 항공우주 분야에서 빈번히 사용되는 5가지 적층순서 중, 인장 및 압축하중에 가장 효과적인 적층순서가 복합재료 쿠폰 해석을 통해 결정되었다. 이와 더불어, 결정된 두가지 복합재료의 적층순서를 적용한 복합재료 빔에 대해 3점 굽힘 해석이 수행되었다. 마지막으로, IIHS 범퍼 충돌 해석을 진행하여 구간 조합으로 이루어진 복합재료 범퍼 빔을 다른 유형의 복합 범퍼 빔과 비교하였다. 제안된 구간조합 복합재료 범퍼 빔은 단일 적층순서로 이루어진 복합재료 범퍼 빔에 비해 우수한 충돌 특성을 나타내었다.

좌굴하중하에서 복합적층판의 최적 적층 설계 (Optimal Stacking Sequence Design of Laminated Composites under Buckling Loads)

  • 윤성진;김관영;황운봉;하성규
    • 한국CDE학회논문집
    • /
    • 제1권2호
    • /
    • pp.107-121
    • /
    • 1996
  • An optimization procedure is proposed to determine the optimal stacking sequence on the buckling of laminated composite plates with midplane symmetry under various loading conditions. Classical lamination theory is used for the determination of the critical buckling load of simply supported angle-ply laminates. Analysis is performed by the Galerkin method and Rayleigh-Ritz method. The approximate solution of buckling is replaced by the algorithms that produce generalized eigenvalue problem. Direct search technique is employed to solve the optimization problem effectively. A series of computations is carried out for plates having different aspect ratios, different load ratios and different number of lay-ups.

  • PDF

적층순서 최적화 알고리듬의 평가;유전 알고리듬과 분기법 (A Comparison of Stacking Sequence Optimization Schemes;Genetic Algorithm and Branch and Bound Method)

  • 김태욱;신정우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.420-424
    • /
    • 2003
  • Stacking sequence optimization needs discrete programming techniques because ply angles are limited to a fixed set of angles such as $0^{\circ},\;{\pm}45^{\circ},\;90^{\circ}$. Two typical methods are genetic algorithm and branch and bound method. The goal of this paper is to compare the methods in the light of their efficiency and performance in handling the constraints and finding the global optimum. For numerical examples, maximization of buckling load is used as objective and optimization results from each method are compared.

  • PDF

보강된 복합재 패널의 최적설계를 위한 유전알고리듬의 연구 (Advanced Genetic Algrorithm Strategies in Optimal Design of Stiffened Composite Panels)

  • 이종수
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1193-1202
    • /
    • 2000
  • The paper describes the use of genetic algorithms (GA's) to the minimum weight design of stiffened composite panels for buckling constraints. The proposed design problem is characterized by mixture of continuous and discrete design variables corresponding to panel elements and stacking sequence of laminates, respectively. Design space is multimodal and non-convex, thereby introducing the need for global search strategies. Advanced strategies in GA's such as directed crossover, multistage search and separated crossover are adopted to improve search ability and to save computational resource requirements. The paper explores the effectiveness of genetic algorithms and their advanced strategies in designing stiffened composite panels under various uniaxial compressive load conditions and the linrlit on stacking sequence of laminates.

수지를 코팅한 준등방성 적층판에 대한 열변형 수치해석 (Numerical Investigation of Surface Deformations in Resin Coated Quasi-Isotropic Laminates due to Thermal Variance)

  • 김경표
    • 한국광학회지
    • /
    • 제25권4호
    • /
    • pp.207-215
    • /
    • 2014
  • 본 논문에서는 단방향 섬유복합재료를 사용하여 만든 준등방성 라미네이트 반사경내의 표면정밀도 문제에 대하여 기술하였다. 복합재 반사경내의 방사형 방향의 굽힘강성계수의 변화로 발생할 수 있는 국부적 표면변형의 형상/패턴 및 반사경 표면에 섬유패턴 효과를 감쇠시키기 위해 추가 수지층이 도포된 반사경에 온도변화 발생시 굽힘강성의 불균일성으로 인하여 발생하는 표면의 굴곡을 수치해석과 실험으로 검토하고 문제점 해결을 위한 방향을 제시하였다.

Numerical study of bonded composite patch repair in damaged laminate composites

  • Azzeddine, Nacira;Benkheira, Ameur;Fekih, Sidi Mohamed;Belhouari, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • 제7권2호
    • /
    • pp.151-168
    • /
    • 2020
  • The present study deals with the repair of composite structures by bonding composite patches. The composite structure is a carbon/epoxy laminate with stacking sequence [45/-45/0/90]S. The damaged zone is simulated by a central crack and repaired by bonding symmetrical composite patches. The repair is carried out using composite patches laminated from the same elemental folds as those of the cracked specimen. Three-dimensional finite element method is used to determine the energy release rate along the front of repaired crack. The effects of the repair technique used single or double patch, the stacking sequence of the cracked composite patch and the adhesive properties were highlighted on the variations of the fracture energy in mode I and mixed mode I + II loading.

탄소섬유강화플라스틱의 적층구성에 따른 드릴 가공에 관한연구 (A study on the Drilling according to the Stacking Sequence of the CFRP)

  • 김선범;신형곤;김태영
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.1-7
    • /
    • 2011
  • The CFRP composite has a lot of merits such as mechanical characteristic, light and thermal resistance. For these merits, CFRP is applied to so many industrial area. In order to use the composite materials in the aircraft structures or machine elements, accurate surfaces for bearing mounting or joints must be provided, which require precise, machining. In this study, the specimens differentiating the stacking sequence of 5kinds were used. When drilling the carbon fiber reinforced plastics, it was checked on whether the stacking sequence reached any effect on the cutting force. Also relationship between the drill diameter is examined from the drilling experiment, which is the drilling of Fabric, Unidirectional specimen with ∅6mm, ∅10mm, ∅12mm cemented carbide drill. Considering cutting force and drilling diameter, the results are analyzed.

Optimal stacking sequence of laminated anisotropic cylindrical panel using genetic algorithm

  • Alibeigloo, A.;Shakeri, M.;Morowa, A.
    • Structural Engineering and Mechanics
    • /
    • 제25권6호
    • /
    • pp.637-652
    • /
    • 2007
  • This paper presents stacking sequence optimization of laminated angle-ply cylindrical panel based on natural frequency. Finite element method (FEM) is used to obtain the vibration characteristic of an anisotropic panel using the first order shear deformation theory(FSDT) and genetic algorithm (GA) is used to obtain the optimal stacking sequence of the layers. Cylindrical panel has finite length and arbitrary boundary conditions. The thicknesses of the layers are assumed constant and their angles are specified as design variables. The effect of the number of plies and boundary conditions in the fitness function is considered. Numerical examples are presented for four, six and eight layered anisotropic cylindrical panels.

CFRP 적층쉘의 적층구성 및 곡률 변화에 따른 관통 특성 (Penetration Characteristics of CFRP Laminated shells according to Stacking Sequence and Curvature)

  • 조영재;김영남;양인영
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.164-171
    • /
    • 2005
  • This study aims to examine an effect of stacking sequence and curvature on the penetration characteristic of a composite laminated shell. For the purpose, we manufactured specimens with different stacking sequences and curvatures, and conducted a penetration test using an air-gun. To examine an influence according to stacking sequence, as flat plate and curvature specimen had more plies, their critical penetration energy was higher, Critical penetration energies of specimen A and C with less interfaces somewhat higher than those of B and D with more interfaces. The reason that with less interfaces, critical penetration energy was higher is pre-impact bending stiffness of composite laminated shell with less interfaces was lower than that of laminated shell with more interfaces, but bending stiffness after impact was higher. And it is because interface, the weakest part of the composite laminated shell, was influenced by transverse impact. As curvature increases, critical penetration energy increases linearly. It is because as curvature increases, resistance to in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. Patterns of cracks caused by penetration of composite laminated shells include interlaminar crack, intralaminar crack, and laminar fracture. A 0$^{\circ}$ply laminar had a matrix crack, a 90$^{\circ}$ply laminar had intralaminar crack and laminar fracture, and interface between 0$^{\circ}$and 90$^{\circ}$laminar had a interlaminar crack. We examined crack length and delamination area through a penetration test. For the specimen A and C with 2 interface, the longest circumferential direction crack length and largest delamination area were observed on the first interface from the impact point. For the specimen B and D with 4 interface, the longest crack length and largest delamination area were observed on the third interface from the impact point.