• 제목/요약/키워드: Stacking sequence

검색결과 293건 처리시간 0.021초

The Stacking Sequence Optimization of Stiffened Laminated Curved Panels with Different Loading and Stiffener Spacing

  • Kim Cheol;Yoon In-Se
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1541-1547
    • /
    • 2006
  • An efficient procedure to obtain the optimal stacking sequence and the minimum weight of stiffened laminated composite curved panels under several loading conditions and stiffener layouts has been developed based on the finite element method and the genetic algorithm that is powerful for the problem with integer variables. Often, designing composite laminates ends up with a stacking sequence optimization that may be formulated as an integer programming problem. This procedure is applied for a problem to find the stacking sequence having a maximum critical buckling load factor and the minimum weight. The object function in this case is the weight of a stiffened laminated composite shell. Three different types of stiffener layouts with different loading conditions are investigated to see how these parameters influence on the stacking sequence optimization of the panel and the stiffeners. It is noticed from the results that the optimal stacking sequence and lay-up angles vary depending on the types. of loading and stiffener spacing.

Effect of stacking sequence on thermal stresses in laminated plates with a quasi-square cutout using the complex variable method

  • Chaleshtari, Mohammad H. Bayati;Khoramishad, Hadi
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.245-259
    • /
    • 2021
  • In this research, the influence of the laminate stacking sequence on thermal stress distribution in symmetric composite plates with a quasi-square cutout subjected to uniform heat flux is examined analytically using the complex variable technique. The analytical solution is obtained based on the thermo-elastic theory and the Lekhnitskii's method. Furthermore, by employing a suitable mapping function, the solution of symmetric laminates containing a circular cutout is extended to the quasi-square cutout. The effect of important parameters including the stacking sequence of laminates, the angular position, the bluntness, the aspect ratio of cutout, the flux angle and the composite material are examined on the thermal stress distribution. It is found out that the circular shape for cutout may not necessarily be the optimum geometry for all stacking sequences. The finite element analysis results are used to validate the analytical solution.

Stacking 방법과 층수에 따른 2 차원 화합물 반도체인 GaS 의 전자구조 변화

  • 양하늘;차선경
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.313-318
    • /
    • 2016
  • 2차원 화합물 반도체인 Metal monochalcogenides (MMC)는 원자 4층으로 이루어진 tetralayer (TL)가 층상으로 쌓여진 구조이다. 서로 이웃한 tetralayer들이 쌓이는 방법에 따라 4가지의 stacking sequence를(${\beta}$, ${\varepsilon}$, ${\gamma}$, ${\delta}$) 고려할 수 있으며 물질에 따라 상대적인 안정성이 달라진다. GaS는 ${\beta}-type$이 가장 안정하다고 알려져 있다. 이 연구에서는 GaS의 층수를 4층까지 쌓으며, ${\beta}$${\varepsilon}$의 stacking sequence의 모든 경우를 다루어 van der Waals interaction을 고려한 LCAO-DFT 제일원리 계산을 수행하였다. 그 결과를 원자구조의 변화, 에너지 안정성, 전자구조의 변화로 나누어 분석하였다. TL 층이 많을수록 TL의 thickness가 감소하고 더 높은 에너지 안정성을 나타냈다. 또한 stacking sequence를 고려하였을 때 ${\varepsilon}$ stacking을 한 결과가 더 안정한 에너지가 나왔다. 이후 ${\varepsilon}$ stacking을 하였을때의 전자구조 변화를 energy band와 projected density of states를 이용해 관찰하였다.

  • PDF

복합재료 골프샤프트의 적층최적화 (Optimization of stacking sequence for composite golf club shafts)

  • 김무선;한동철;김선진;이우일
    • Composites Research
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2007
  • 본 논문에서는 골프클럽샤프트의 정적특성의 최적화 방법론을 제시하였다. 복합재료를 사용한 샤프트의 최적성능향상을 위한 쉬트 프리프레그의 적층순서를 구하였다. 클럽샤프트의 굽힘 강성과 비틀림 강성의 동시 최적화를 위하여 새로운 최적화 목적함수를 제시하였다. 샤프트의 정적특성 분석을 위하여 고전적층 이론을 적용하였으며 최적화 방법으로서 적층순서를 설계변수로 정의하는 유전알고리즘을 사용하였다. 또한 얻어진 최적적층순서를 바탕으로 한 샤프트의 동적특성을 분석하였다.

이산 섬유 배열각을 이용한 복합재료 적층 평판의 최적 설계 (Layup Optimization for Composite Laminates with Discrete Ply Angles)

  • 김태욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.734-739
    • /
    • 2001
  • In this paper, an algorithm for stacking sequence optimization which deals with discrete ply angles is used for optimization of composite laminated plates. To handle discrete ply angles, the branch and bound method is modified. Numerical results show that the optimal stacking sequence is found with fewer evaluations of objective function than expected with the size of feasible region, which shows the algorithm can be effectively used for layup optimization of composite laminates..

  • PDF

철도분야 응용을 위한 전문가 시스템을 이용한 복합적층판의 적층순서 최적설계 (Stacking Sequence Optimization of Composite Laminates for Railways Using Expert System)

  • 김정석
    • 한국철도학회논문집
    • /
    • 제8권5호
    • /
    • pp.411-418
    • /
    • 2005
  • This paper expounds the development of a user-friendly expert system for the optimal stacking sequence design of composite laminates subjected to the various rules constraints. The expert system was realized in the graphic-based design environment. Therefore, users can access and use the system easily. The optimal stacking sequence is obtained by means of integration of a genetic algorithm, finite element analysis. These systems were integrated with the rules of design heuristics under an expert system shell. The optimal stacking sequence combination for the application of interest is drawn from the discrete ply angles and design rules stored in the knowledge base of the expert system. For the integration and management of softwares, a graphic-based design environment that provides multi-tasking and graphic user interface capability is built.

유전자 기법을 이용한 복합재 보강구조물 외피 및 보강재의 적층각 최적설계 (Optimal Design of Skin and Stiffener of Stiffened Composite Shells Using Genetic Algorithms)

  • 윤인세;최흥섭;김철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.233-236
    • /
    • 2002
  • An efficient method was developed in this study to obtain optimal stacking sequences, thicknesses, and minimum weights of stiffened laminated composite shells under combined loading conditions and stiffener layouts using genetic algorithms (GAs) and finite element analyses. Among many parameters in designing composite laminates determining a optimal stacking sequence that may be formulated as an integer programming problem is a primary concern. Of many optimization algorithms, GAs are powerful methodology for the problem with discrete variables. In this paper the optimal stacking sequence was determined, which gives the maximum critical buckling load factor and the minimum weight as well. To solve this problem, both the finite element analysis by ABAQUS and the GA-based optimization procedure have been implemented together with an interface code. Throughout many parametric studies using this analysis tool, the influences of stiffener sizes and three different types of stiffener layouts on the stacking sequence changes were throughly investigated subjected to various combined loading conditions.

  • PDF

Optimal stacking sequence design of laminate composite structures using tabu embedded simulated annealing

  • Rama Mohan Rao, A.;Arvind, N.
    • Structural Engineering and Mechanics
    • /
    • 제25권2호
    • /
    • pp.239-268
    • /
    • 2007
  • This paper deals with optimal stacking sequence design of laminate composite structures. The stacking sequence optimisation of laminate composites is formulated as a combinatorial problem and is solved using Simulated Annealing (SA), an algorithm devised based on inspiration of physical process of annealing of solids. The combinatorial constraints are handled using a correction strategy. The SA algorithm is strengthened by embedding Tabu search in order to prevent recycling of recently visited solutions and the resulting algorithm is referred to as tabu embedded simulated Annealing (TSA) algorithm. Computational performance of the proposed TSA algorithm is enhanced through cache-fetch implementation. Numerical experiments have been conducted by considering rectangular composite panels and composite cylindrical shell with different ply numbers and orientations. Numerical studies indicate that the TSA algorithm is quite effective in providing practical designs for lay-up sequence optimisation of laminate composites. The effect of various neighbourhood search algorithms on the convergence characteristics of TSA algorithm is investigated. The sensitiveness of the proposed optimisation algorithm for various parameter settings in simulated annealing is explored through parametric studies. Later, the TSA algorithm is employed for multi-criteria optimisation of hybrid composite cylinders for simultaneously optimising cost as well as weight with constraint on buckling load. The two objectives are initially considered individually and later collectively to solve as a multi-criteria optimisation problem. Finally, the computational efficiency of the TSA based stacking sequence optimisation algorithm has been compared with the genetic algorithm and found to be superior in performance.

Discrete Optimization for Vibration Design of Composite Plates by Using Lamination Parameters

  • Honda, Shinya;Narita, Yoshihiro;Sasaki, Katsuhiko
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.297-314
    • /
    • 2009
  • A design method is proposed to optimize the stacking sequence of laminated composite plates for desired vibration characteristics. The objective functions are the natural frequencies of the laminated plates, and three types of optimization problems are studied where the fundamental frequency and the difference of two adjacent frequencies are maximized, and the difference between the target and actual frequencies is minimized. The design variables are a set of discrete values of fiber orientation angles with prescribed increment in the layers of the plates. The four lamination parameters are used to describe the bending property of a symmetrically laminated plate, and are optimized by a gradient method in the first stage. A new technique is introduced in the second stage to convert from the optimum four lamination parameters into the stacking sequence that is composed of the optimum fiber orientation angles of all the layers. Plates are divided into sub-domains composed of the small number of layers and designed sequentially from outer domains. For each domain, the optimum angles are determined by minimizing the errors between the optimum lamination parameters obtained in the first step and the parameters for all possible discrete stacking sequence designs. It is shown in numerical examples that this design method can provide with accurate optimum solutions for the stacking sequence of vibrating composite plates with various boundary conditions.

섬유 배열각의 이산성과 물성치의 불확실성을 고려한 복합재료 적층 평판의 최적 설계 (Optimal Design of Composite Laminated Plates with the Discreteness in Ply Angles and Uncertainty in Material Properties Considered)

  • 김태욱;신효철
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.369-380
    • /
    • 2001
  • Although extensive efforts have been devoted to the optimal design of composite laminated plates in recent years, some practical issues still need further research. Two of them are: the handling of the ply angle as either continuous or discrete; and that of the uncertainties in material properties, which were treated as continuous and ignored respectively in most researches in the past. In this paper, an algorithm for stacking sequence optimization which deals with discrete ply angles and that for thickness optimization which considers uncertainties in material properties are used for a two step optimization of composite laminated plates. In the stacking sequence optimization, the branch and bound method is modified to handle discrete variables; and in the thickness optimization, the convex modeling is used in calculating the failure criterion, given as constraint, to consider the uncertain material properties. Numerical results show that the optimal stacking sequence is found with fewer evaluations of objective function than expected with the size of feasible region taken into consideration; and the optimal thickness increases when the uncertainties of elastic moduli considered, which shows such uncertainties should not be ignored for safe and reliable designs.