• Title/Summary/Keyword: Stacked Patch Antenna

Search Result 56, Processing Time 0.024 seconds

Ferrite-based wideband circularly polarized microstrip antenna design

  • Mashhadi, Mostafa;Komjani, Nader;Rejaei, Behzad;Ghalibafan, Javad
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.289-297
    • /
    • 2019
  • In this paper, a wideband, circularly polarized patch antenna is proposed that leverages the unidirectional resonant modes of a circular patch mounted on top of a grounded dielectric-ferrite substrate. The proposed antenna is fed via the proximity coupling method and several parasitically coupled patches are placed on a dielectric superstrate to enhance the impedance bandwidth of the antenna. The resonant modes of the structure rotate only in the clockwise or counter clockwise directions. In the frequency range where the effective permeability of the ferrite layer is negative, the resonance frequencies of these modes differ significantly, which produces a large axial ratio (AR) bandwidth. For the proposed antenna, the numerical results show the 10 dB impedance bandwidth to be around 44% and the 3 dB axial ratio bandwidth to be higher than 64%.

Microstrip Patch Antenna with a Metal Cavity Using Conducting Vias (다수의 도체 비어로 형성된 캐비티가 있는 마이크로스트립 패치 안테나)

  • Byun, Woo-Jin;Kim, Bong-Soo;Eun, Ki-Chan;Kim, Kwang-Sun;Song, Myung-Sun
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.371-374
    • /
    • 2005
  • This paper presents the design and fabrication of a cost effective and broad band 8$\times$8 stacked patch array antenna which are backed by a metal cavity operating at 400Hz based on 4 layers LTCC technology. Gain of antenna can be enhanced by using a metal cavity, which can be easily implemented by using LTCC substrates and vias. The broadband performance can be obtained by varying the dimension of patch and the number of layers. Furthermore, to keep the feeding network as smal1 as possible and reduce radiation from feeding network a mirrored patch orientation and embedded micro strip line are adopted, The fabricated antenna is $40\times45\times0.4$ $mm^3$in size. It shows gain 20.4dBi, beam width 10.7deg and impedance bandwidth of l0dE return loss 3.35GHz (40.9$\sim$44.25 GHz), which is about 8% of a center frequency.

  • PDF

Development of Flight Antennas for Micro Aerial Vehicle (소형 무인항공기 탑재형 안테나 개발)

  • Kim Duck-Hwan;Lee Kyu-Hwan;Kim Young-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.20-25
    • /
    • 2004
  • The existing antenna that equipped with Micro Aerial Vehicle, microstrip antenna only can send and receive image signal because of limited bandwidth. But, proposed antenna that equipped with Micro Aerial Vehicle flight introduces tapered type patch antenna, also improves bandwidth then can transfer present location, altitude, movement speed. Furthermore, as a result of introduce stacked type, it transfers more quality of image signal, and represents most suitable performance in Korean peninsula that has many mountain peaks. In this paper, to transmit and receive the wideband signals with a antenna system, the wideband microstrip antenna is proposed and designed. This antenna operates at 2.4GHz. In this thesis, the resonance frequency of 2.4GHz and the reflective loss of the antenna of -22dB were calculated by measuring the fabricated Tapered Microstrip Patch Antenna which was designed with the resonance of 2.4GHz. The calculated gain and efficiency of antenna were 6.7dB and $60\%$ respectively. The characteristic of the bandwidth shows with $50\~60MHz$ which is $6.02\%$ at the basis of -l5dB reflective loss. The experimental results can be used in the characteristic of the resonators and this antenna produces a greatly enhanced bandwidth.

Stacked Microstrip Antenna Design for PCS Base Station (개인휴대통신 기지국용 적층된 마이크로스트립 안테나 설계)

  • Park, Jong-Sung;Jeon, Joo-Seong;Kim, Hyung-Bum;Kim, Dong-Won;Jin, Sung-Woo;Lee, Jin;Lee, Yun-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.1
    • /
    • pp.23-35
    • /
    • 2000
  • In this paper, the design for a PCS base station antenna which is using broadband method by a stacked structure has been studied. The sensitive parameters, such as the parasitic elements, the height of air layer between the upper and lower patch, and the variation of feed point, of the microstrip antenna that has stacked structure in a characteristics variation situation are classified and the characteristics has been investigated through the simulations. A designed antenna has following characters. Impedance bandwidth is Z57.5MHz(VSWR${\leq}$2), horizontal beamwidth is $64.1^{\circ}$, and gain is 14.7dBi. Therefore, it is confirmed the characteristics is good. In this paper, through the designing of a stacked microstrip antenna, we has investigated the availability for Korea PCS base station antenna.

  • PDF

The Research of Single Fed Broadband Planar Array Antenna with Modified Stacked-Structure using Circular Polarization (변형된 적층구조를 갖는 단일급전방식의 광대역 평판형 배열안테나 연구)

  • 정영배;이영환;문정익;박성욱;하재권
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.919-930
    • /
    • 2001
  • This paper presents a wideband technique of impedance and axial-ratio bandwidth which uses the stacked planar array structure through optimum design of sub-polarization generating sections and parasitic patch. So, the effect of the dual-resonance characteristic can contribute to the bandwidth expansion of single fed planar array antenna using circular polarization which doesn\`t hire previous bandwidth expansion technique. The antenna can be used as a dual-band antenna by adjusting the resonance frequencies as well, and then the antenna is designed and fabricated in the frequency band of domestic satellite-TV service. This antenna has the performance of 9.7 % impedance bandwidth and 24 dBi of antenna gain. And it has also 2.8 % and 1.4 % of 3 dB Axial-ratio bandwidth at 11.4 GHz and 11.8 GHz respectively.

  • PDF

Design of a Miniature Wideband H-shaped Microstrip Antenna for WLAN (WLAN용 소형 광대역 H-모양 마이크로스트립 안테나)

  • 이진우;이종철;윤서용;이문수
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.15-20
    • /
    • 2004
  • In this paper, a wideband two-layer H-shaped microstrip antenna for WLAN is designed. To increase the bandwidth of microstrip patch antenna a configuration of stacked type using parastic element is used. Furthermore, to reduce the size of microstrip patch antenna, two techniques are employed . the first one is H-shaped patch type and the second one is that the main radiator and parastic patch are shorted to the ground plane using ten shorting posts. The antenna bandwidth and radiation characteristics are calculated by ENSEMBLE ver. 5.0 simulation software, and compared with the experimental results. Experiment results show that the bandwidth of antenna in 740MHz centered at 5.46㎓(13.5%), which is close agreement with the calculations, 770MHz(13%). Also, the antenna size can be reduced by 71.5% compared with the half wavelength rectangular microstrip antenna using the same substrate at the same frequency.

Design of Internal Integrated Microstrip Patch Antenna for PCS Handset (PCS 단말기용 내장형 마이크로스트립 패치 안테나 설계)

  • Cho Dong-Ki;Park Kyeng-Tea;Lee Ho-Sang;Lee Mun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.792-797
    • /
    • 2006
  • In this paper, an internal integrated microstrop patch for PCS handset is designed. To increase the bandwidth of microstrip patch antenna, a configuration of stacked type using parasitic element is used. Furthermore, to reduce the size of microstirip patch antenna, the main radiator in the substrate is shorted to the ground plane using five shorting-posts while three parasitic elements on the superstrate are also shorted to the ground plane using two shorting-posts respectively. The antenna bandwidth and radiation characteristics are calculated by HFSS 7.0 software, and compared with the experimental results. Experimental results show that the return loss is less than -10dB over the band of 1766MHz to 1900 MHz(134MHz) and the size of the fabricated microstrip patch antenna are $23\times20\times6.35mm$.

A Design of Dual-band Microstrip Antennas using Stacked Inverted-L-shaped Parasitic Elements for GPS Applications (GPS용 역 L형 기생소자를 이용한 이중대역 마이크로스트립 안테나 설계)

  • Kim, Jun-Won;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.31-37
    • /
    • 2015
  • In this paper, newly proposed dual-band microstrip antennas using stacked inverted-L-shaped parasitic elements are presented for GPS $L_1(1.575GHz)$ and $L_2(1.227GHz)$ bands. For making dual band which has large interval, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements were stacked at both side of radiation apertures on the half-wavelength($L_2$ band) patch antennas. The resonance in the parasitic elements occurs through coupling to the patch. Next, due to using circular polarization at GPS, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements was stacked using sequential rotation technique on the patch and both side of the diagonal corners of the antenna were eliminated to make dual-band circular polarization. The designed circular polarized antenna's dimensions are $0.43{\lambda}L{\times}0.43{\lambda}L{\times}0.06{\lambda}L$ (${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths was 120 MHz(7.6%) and 82.5 MHz(6.7%) at GPS $L_1$ and $L_2$ bands. and 3 dB axial ration bandwidths are 172 MHz(10.9%) and 25 MHz(2.03%), respectively. All of these cover the respective required system bandwidths. Within each of the designed bands, broadside radiation patterns were observed.

Active GNSS Antenna Implemented with Two-Stage LNA on High Permittivity Substrate

  • Go, Jong-Gyu;Chung, Jae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2004-2010
    • /
    • 2018
  • We propose a small active antenna to receive Global Navigation Satellite System (GNSS) signals, i.e., Global Positioning System (GPS) L1 (1,575MHz) and Russian Global Navigation Satellite System (GLONASS) L1 (1,600 MHz) signals. A two-stage low-noise amplifier (LNA) with more than 27 dB gain is implemented in the bottom layer of a three-layer antenna package. In addition, a hybrid coupler is used to combine signals from pair of proximately coupled orthogonal feeds with $90^{\circ}$ phase difference to achieve the circular polarization (CP) characteristic. Three layers of high permittivity (${\varepsilon}_r=10$) substrates are stacked and effectively integrated to have a small dimension of $64mm{\times}64mm{\times}7.42mm$ (including both circuit and antenna). The reflection coefficient of the fabricated antenna at the target frequency is below -10 dB, the measured antenna gain is above 26 dBic and the measured noise figure is less than 1.4 dB.

Design of Dual-Polarized and Multi-Band Multi-Layer Patch Antenna (다층구조의 이중편파 다중대역 패치 안테나 설계)

  • Choi, Jong-Ho;Jeong, Bong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.156-161
    • /
    • 2015
  • In this paper, a dual-polarized multi-band multi-layer antenna for a vehicle, which operates in the GPS, bluetooth, and DSRC bands, was implemented. The antenna was designed as a multi-layer structure, and a FR4-epoxy substrate with =4.4 and =1.6mm was used. GPS and DSRC antennas have circular polarized characteristics, and a single probe feeding method was applied. Simulated results by Ansys HFSS v11 was compared with the measured ones. The size of the optimally designed antenna is $67mm{\times}67mm{\times}4.8mm$, -10dB bandwidth of the anatenna was measured to be 820MHz, 127MHz, and 862MHz in each band, and 3dB AR bandwidth of the antenna was simulated to be 19MHz and 110MHz in GPS and DSRC bands. The results confirmed that suggested system satisfies the system requirements.