• Title/Summary/Keyword: Stacked Patch

Search Result 57, Processing Time 0.024 seconds

Design and Fabrication of Wideband Antenna Using E-shaped Stacked Patches for IMT-Advanced AccessPoint. (E형 적층패치를 이용한 4세대 이동통신 AccessPoint용 광대역 안테나의 설계 및 제작)

  • Yoon, Hyun-Soo;Choi, Byoung-Ha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.223-228
    • /
    • 2007
  • In this paper, Wideband antenna using E-shaped stacked patches has been designed and fabricated for 4th generation mobile communication(IMT-Advanced) AccessPoint application. E-shaped patch was miniature and brodband by made the movement route of current long. And inductive of coaxial probe compensates capacitive by slot. Therefore we fabricated to improve the bandwidth of proposed antenna. The E-shaped single patch antenna has an impedance bandwidth of about 13%(510[MHz]), By adding a second patch at the top of the first patch a bandwidth of 56%(2060[MHz]). The final fabricated antenna could have a good return loss(Return loss ${\leq}-10dB$) and a high gain(over 9.6dBi) at the range of 3.23 ${\sim}$ 5.29 [GHz].

  • PDF

Compact LTCC Patch Antenna Integrating a Wideband Vertical Transition for millimeter-wave SoP Applications (밀리미터파 SoP 응용을 위해 광대역 수직천이를 집적한 초소형 LTCC 팻치안테나)

  • Lee, Young Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • In this work, a compact patch antenna based on a low temperature cofired ceramic (LTCC) has been presented for V-band system-on-package (SoP) applications. In order to integrate it with transceiver block, a waveguide (W/G) to embedded microstrip line (eMSL) vertical transition was designed using slot-fed double stacked patch antennas for easy assembly and wide bandwidth. The $2{\times}2$ patch antenna integrating the transition was designed and fabricated in the 5-layer LTCC dielectrics. The whole size of the fabricated antenna including the $2{\times}2$ patches, transition and W/G was $20{\times}24{\times}5.39mm^3$. The fabricated antenna has achieved a 10 dB impedance bandwidth of 2.45 GHz from 61 to 63.45 GHz.

Design of beam tilting microstrip patch array antenna using H-plane coupling (H-면 결합을 이용한 빔 틸팅 마이크로스트립 패치 배열 안테나 설계)

  • 하재권;최성수;박동철
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.293-296
    • /
    • 2002
  • In this paper, we proposed a beam tilting microstrip patch array antenna for the reception of satellite signals by using low cost copper etched polyester films and foams. The configuration and coupling mechanism of the proposed antenna are similar to the dipole Yagi-Uda antenna. It is composed of 3 layers of polyester films and three layers of foam. In order to prevent unwanted radiation and coupling loss by microstrip feeding networks and parasitic patches, a stacked layer with rectangular slots above the driver patch array is inserted. The 16${\times}$8 element microstrip Patch way antenna is Presented by experimental results. Its beam patterns are affected by many parameters such as sizes of the patches, gap between the patches. characteristics of the substrates, feeding method, etc. Owing to its complexities of various design parameters, both simulation and experiment were performed. The fabricated antenna received DBS signal from KOREASAT 3 by doing nothing but adjusting azimuth direction.

  • PDF

Design of a wideband H-shaped Microstrip Antenna for WLAN (WLAN용 광대역 H-모양 마이크로스트립 안테나)

  • 이진우;이문수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.625-628
    • /
    • 2003
  • In this paper, a wideband two-layer H-shaped microstrip antenna for WLAN is designed and studied experimentally. To increase the bandwidth of microstrip patch antenna, a configuration of stacked type using parastic element is used, Furthermore, to reduce the size of microstrip patch antenna, the first technique is H-shaped patch type. the second technique is that the main radiator and parastic patch are shorted to the ground plane using ten shorting posts. The antenna bandwidth and radiation characteristics are calculated by ENSEMBLE ver. 5.0 simulation software, and compared with the experimental results, Experimental results show that the return loss is less than -10dB over the band of 5.086GHz to 5.832GHz, which is quite good agreement with the calculations.

  • PDF

Design of Three-stacked Microstrip Patch Array Antenna Having Tx/Rx Feeds For Satellite Communication (위성통신을 위한 송수신 겸용 삼중 적층 마이크로스트립 패치 배열 안테나 설계)

  • Park, Ung-Hee;Noh, Haeng-Sook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.853-859
    • /
    • 2007
  • This paper presents a microstrip patch array antenna having transmission feed and reception feed for satellite communication in the Ku band. In this paper, the element of the patch array antenna is a three-stacked structure consisting of one radiation patch and two parasitic patches for high gain and wide bandwidth characteristics. To obtain higher gain, the unit elements are expanded into a $1{\times}8$ may using a mixture of series and parallel feeds. The proposed antenna has horizontal polarization for the Rx band and vertical polarization for the Tx band. To verify the practicality of this antenna, we fabricated a three-stacked patch array antenna and measured its performance. The gain of the array antenna in the Rx and Tx bands exceeds 17 and 18 dBi, respectively. The impedance bandwidth is over 10 % in both bands. The cross-polarization level is below -25 dB, and the sidelobe level is below -9.4 dB.

Radiation Characteristics of a S / X Dual Broad Band Patch Antenna with Shared Aperture Structure (개구면 공유 구조를 가지는 S / X 이중 광대역 패치 안테나의 방사 특성)

  • Kwak, Eun-Hyuk;Lee, Yong-Seung;Kim, Boo-Gyoun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.718-729
    • /
    • 2015
  • A S / X dual broad band patch antenna with shared aperture structure is fabricated. A $2{\times}2$ perforated patch is used for S-band operation and a $2{\times}2$ patch antenna array is integrated in the $2{\times}2$ perforation for X-band operation. The measurement results of a S / X dual broad band patch antenna with shared aperture structure show the broad band characteristics larger than 20 % in both bands.

A Design of Dual-band Microstrip Antennas using Stacked Inverted-L-shaped Parasitic Elements for GPS Applications (GPS용 역 L형 기생소자를 이용한 이중대역 마이크로스트립 안테나 설계)

  • Kim, Jun-Won;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.31-37
    • /
    • 2015
  • In this paper, newly proposed dual-band microstrip antennas using stacked inverted-L-shaped parasitic elements are presented for GPS $L_1(1.575GHz)$ and $L_2(1.227GHz)$ bands. For making dual band which has large interval, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements were stacked at both side of radiation apertures on the half-wavelength($L_2$ band) patch antennas. The resonance in the parasitic elements occurs through coupling to the patch. Next, due to using circular polarization at GPS, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements was stacked using sequential rotation technique on the patch and both side of the diagonal corners of the antenna were eliminated to make dual-band circular polarization. The designed circular polarized antenna's dimensions are $0.43{\lambda}L{\times}0.43{\lambda}L{\times}0.06{\lambda}L$ (${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths was 120 MHz(7.6%) and 82.5 MHz(6.7%) at GPS $L_1$ and $L_2$ bands. and 3 dB axial ration bandwidths are 172 MHz(10.9%) and 25 MHz(2.03%), respectively. All of these cover the respective required system bandwidths. Within each of the designed bands, broadside radiation patterns were observed.

Design and manufacture of Bow-Tie antenna for wireless LAN (무선 LAN용 Bow-Tie안테나의 설계 및 제작)

  • Kim, Jin;Park, Kyoung-Soo;Lee, Hee-Bock;Lim, Young-Hwan;Ko, Young-Ho
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.341-344
    • /
    • 2000
  • There are many researches to increase bandwidth of the microstrip patch antenna for wireless LAN. In spite of broad bandwidth, Bow-Tie microstrip patch antenna, broadband microstrip patch antenna, has disadvantages that are low gain and big size. In this paper, stacked Bow-Tie microstrip patch antenna for wireless LAN is designed in 5.725~5.825GHz band. This antenna has characteristics that are broadband bandwidth, high gain and small size compared with microstrip patch antenna. In simulated results, the return loss is -34.2dB at 5.78GHz and bandwidth is 11.345% for VSWR is 2:1 and 7.75% for VSWR is 1.5:1. In measured results, the return loss is -38-45dB at 5.78GHz and bandwidth is 13% for VSWR is 2:1 and 5.6% for VSWR is 1.5:1.

  • PDF

Design of Stacked Bow-Tie Antenna for Wireless LAN (무선 LAN을 위한 적층 구조의 Bow-Tie Antenna의 설계)

  • 고영호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1455-1461
    • /
    • 2000
  • There are many researches to increase bandwidth of the microstrip patch antenna for wireless LAN. In spite of broad bandwidth, Bow-Tie antenna has disadvantages that are low gain and big size. In this paper, stacked Bow-Tie microstrip patch antenna for wireless LAN is designed in 5.725 ~5.825 GHz band. This antenna has characteristics that are broadband bandwidth, high gain and small size compared with microstrip patch antenna. In simulated results, the return loss is -34.2 dB at 5.78 GHz and bandwidth is 11.345% for VSWR 2:1 and 7.75%for VSWR 1.5:1. In measured results, the return loss is -38.45 dB at 5.78 GHz and bandwidth is 13% for VSWR 2:1 and 5.6% for VSWR 1.5:1. It has 73.16$^{\circ}$ -3dB beam width and 6.5dB gain.

  • PDF

Microstrip Patch Antenna with a Metal Cavity Using Conducting Vias (다수의 도체 비어로 형성된 캐비티가 있는 마이크로스트립 패치 안테나)

  • Byun, Woo-Jin;Kim, Bong-Soo;Eun, Ki-Chan;Kim, Kwang-Sun;Song, Myung-Sun
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.371-374
    • /
    • 2005
  • This paper presents the design and fabrication of a cost effective and broad band 8$\times$8 stacked patch array antenna which are backed by a metal cavity operating at 400Hz based on 4 layers LTCC technology. Gain of antenna can be enhanced by using a metal cavity, which can be easily implemented by using LTCC substrates and vias. The broadband performance can be obtained by varying the dimension of patch and the number of layers. Furthermore, to keep the feeding network as smal1 as possible and reduce radiation from feeding network a mirrored patch orientation and embedded micro strip line are adopted, The fabricated antenna is $40\times45\times0.4$ $mm^3$in size. It shows gain 20.4dBi, beam width 10.7deg and impedance bandwidth of l0dE return loss 3.35GHz (40.9$\sim$44.25 GHz), which is about 8% of a center frequency.

  • PDF