• Title/Summary/Keyword: Stack cell

Search Result 584, Processing Time 0.027 seconds

Design and Control Method for Critical Load Supply Equipment using MCFC Electricity Generation Systems (대용량 MCFC 발전시스템을 이용한 비상부하 전력 공급 장치 설계 및 제어방법)

  • Kim, Dong-Hee;Kim, Jong-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Kawk, Cheol-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.20-29
    • /
    • 2011
  • This paper proposes critical load following back-up system using MCFC stack. This system enables MCFC generation system to supply power to critical load without UPS and to generate rated power under grid fault state. This back-up system includes 'Load Leveler' that is connected with 3-phase inverter and is controlled by additional algorithm that includes critical load following. The proposed system and algorithm are verified by computer simulation based on 5kW system.

System Development of a 100 kW Molten Carbonate Fuel Cell IV(System commisioning for operation (100 kW급 용융탄산염 연료전지 시스템 개발 IV(MCFC 시스템 시운전))

  • Lim, Hee-Chun;Ahn, Kyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1681-1683
    • /
    • 2005
  • The molten carbonate fuel tell(MCFC) is endowed with the high potential especially in future electric power generation industry by its own outstanding characteristics. KEPCO(KEPRI) started a 100 kW MCFC system development program in 1993 and has been executed 100kW system develpilot plant successfully completed first phaseopment by 2005 on the basis of successful results of 25kW system development. In this program, the components and mechanical structure for 100 kW stack and system construction were completed on last year and now system pre-commissioning was being executed. A 100 kW MCFC power plant was constructed at the site of Boryeong Thermal Power Plant. A 100 kW MCFC system has characterized as a high pressure operation mode, $CO_2$ recycle, and externally reforming power generation system. The 100 kW MCFC system consisted with stacks which was made by two 50 kW sub-stacks, 90 cells with 6,000 cm2 active area and BOP including a reformer, a recycle blower, a catalytic burner, an inverter, and etc. The system will be operated under 3 atm pressure condition and expected to last over 5,000 hours by the end of this year.

  • PDF

Random-Oriented (Bi,La)4Ti3O12 Thin Film Deposited by Pulsed-DC Sputtering Method on Ferroelectric Random Access Memory Device

  • Lee, Youn-Ki;Ryu, Sung-Lim;Kweon, Soon-Yong;Yeom, Seung-Jin;Kang, Hee-Bok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.258-261
    • /
    • 2011
  • A ferroelectric $(Bi,La)_4Ti_3O_{12}$ (BLT) thin film fabricated by the pulsed-DC sputtering method was evaluated on a cell structure to check its compatibility to high density ferroelectric random access memory (FeRAM) devices. The BLT composition in the sputtering target was $Bi_{4.8}La_{1.0}Ti_{3.0}O_{12}$. Firstly, a BLT film was deposited on a buried Pt/$IrO_x$/Ir bottom electrode stack with W-plug connected to the transistor in a lower place. Then, the film was finally crystallized at $700^{\circ}C$ for 30 seconds in oxygen ambient. The annealed BLT layer was found to have randomly oriented and small ellipsoidal-shaped grains (long direction: ~100 nm, short direction: ~20 nm). The small and uniform-sized grains with random orientations were considered to be suitable for high density FeRAM devices.

A Novel Non-Isolated DC-DC Converter with High Efficiency and High Step-Up Voltage Gain (고효율 및 고변압비를 가진 새로운 비절연형 컨버터)

  • Amin, Saghir;Tran, Manh Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.11-13
    • /
    • 2019
  • This paper proposes a novel high step-up non-isolated DC-DC converter, suitable for regulating dc bus in various inherent low voltage micro sources especially for photovoltaic (PV) and fuel cell sources. This novel high voltage Non-isolated Boost DC-DC converter topology is best replacement, where high voltage conversion ratio is required without the transformer and also need continuous input current. Since the proposed topology utilizes the stack-based structure, the voltage gain, and the efficiency are higher than other conventional non-isolated converters. Switches in this topology is easier to control since its control signal is grounding reference. Also, there is no need of extra gate driver and extra power supply for driver circuit, which reduces the cost and size of system. In order to show the feasibility and practicality of the proposed topology principle operation, steady state analysis and simulation result is presented and analyzed in detail. To verify the performance of proposed converter and theoretical analysis 360W laboratory prototype is implemented.

  • PDF

Dynamic Model of Water Electrolysis for Prediction of Dynamic Characteristics of Cooling System (냉각계통 동적 예측을 위한 수전해 시스템 동적 모사 모델)

  • YUN, SANGHYUN;YUN, JINYON;HWANG, GUNYONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Water electrolysis technology, which generates hydrogen using renewable energy resources, has recently attracted great attention. Especially, the polymer electrolyte membrane water electrolysis system has several advantages over other water electrolysis technologies, such as high efficiency, low operating temperature, and optimal operating point. Since research that analyzes performance characteristics using test bench have high cost and long test time, however, model based approach is very important. Therefore, in this study, a system model for water electrolysis dynamics of a polymer electrolyte membrane was developed based on MATLAB/Simulink®. The water electrolysis system developed in this study can take into account the heat and mass transfer characteristics in the cell with the load variation. In particular, the performance of the system according to the stack temperature control can be analyzed and evaluated. As a result, the developed water electrolysis system can analyze water pump dynamics and hydrogen generation according to temperature dynamics by reflecting the dynamics of temperature.

Partial Oxidation Reformer in a Plasma-Recuperative Burner (플라즈마-축열버너 부분산화 개질장치)

  • AN, JUNE;CHUN, YOUNG NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.68-76
    • /
    • 2021
  • Climate change problems occur during the use of fossil fuel and the process of biogas production. Research continues to convert carbon dioxide and methane, the major causes of climate change, into high-quality energy sources. in order to present the performance potential for the novel plasma-recuperative burner reformer, the reforming characteristics for each variable were indentified. The optimal operating condition of was an O2/C ratio of 1.0 and a total gas supply of 20 L/min. At this time, CH4 conversion was 64%, H2 selectivity was 39%, and H2/CO ratio was 1.13, which were the results applicable to the solid oxide fuel cell fuel stack for RPG, or Residential Power Generator. Recirculation of reformed gas increases the amount of H2 and CO, which are combustible gases, especially the amount of H2. As a result, the H2 selectivity is improved, and high-quality gas can be produced.

A Numerical Study on the Opening Characteristics of High Pressure Hydrogen Valves (고압수소 밸브의 시동 특성에 관한 수치적 연구)

  • SANGMIN KIM;JINSUNG KIM;YOUNGJUN CHO;SIWON YANG;MOONSUNG SHIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.689-697
    • /
    • 2023
  • The high-pressure hydrogen valve is intended to supply hydrogen charged at high pressure in the hydrogen tank to the fuel cell stack, which decompresses high-pressure hydrogen gas to low pressure and primarily limits the excessive flow. It consists of a pilot valve, a main valve, and a excessive flow valve to operate in a wide pressure range from 2 to 70 MPa of charging pressure. The opening characteristics of the valve were confirmed by computation fluid dynamics applying the moving grid technique. The behavior of the valve was predicted by predicting the force acting on the valve over time. In addition, the difference in behavior according to supply pressure was compared.

Continuous Decomposition of Ammonia by a Multi Cell-Stacked Electrolyzer with a Self-pH Adjustment Function (자체 pH 조정 기능을 갖는 다단 전해조에 의한 암모니아의 연속식 분해)

  • Kim, Kwang-Wook;Kim, Young-Jun;Kim, In-Tae;Park, Geun-Il;Lee, Eil-Hee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.352-359
    • /
    • 2005
  • This work has studied the changes of pH in both of anodic and cathodic chambers of a divided cell due to the electrolytic split of water during the ammonia decomposition to nitrogen, and has studied the continuous decomposition characteristics of ammonia in a multi-cell stacked electrolyzer. The electrolytic decomposition of ammonia was much affected by the change of pH of ammonia solution which was caused by the water split reactions. The water split reaction occurred at pH of less than 8 in the anodic chamber with producing proton ions, and occurred at pH of more than 11 in the cathodic chamber with producing hydroxyl ions. The pH of the anodic chamber using an anion exchange membrane was sustained to be higher than that using a cation exchange membrane, which resulted in the higher decomposition of ammonia in the anodic chamber. By using the electrolytic characteristics of the divided cell, a continuous electrolyzer with a self-pH adjustment function was newly devised, where a portion of the ammonia solution from a pHadjustment tank was circulated through the cathodic chambers of the electrolyzer. It enhanced the pH of the ammonia solution fed from the pH-adjustment tank into the anodic chambers of the electrolyzer, which caused a higher decomposition yield of ammonia. And then, based on the electrolyzer, a salt-free ammonia decomposition process was suggested. In that process, ammonia solution could be continuously decomposed into the environmentally-harmless nitrogen gas up to 83%, when chloride ion was added into the ammonia solution.

Cell-cultivable ultrasonic transducer integrated on glass-coverslip (세포 배양 가능한 커버슬립형 초음파 변환자)

  • Keunhyung Lee;Jinhyoung Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.412-421
    • /
    • 2023
  • Ultrasound brain stimulation is spot-lighted by its capability of inducing brain cell activation in a localized deep brain region and ultimately treating impaired brain function while the efficiency and directivity of neural modulation are highly dependent on types of stimulus waveforms. Therefore, to optimize the types of stimulation parameters, we propose a cell-cultivable ultrasonic transducer having a series stack of a spin-coated polymer piezoelectric element (Poly-vinylidene fluoride-trifluorethylene, PVDF-TrFE) and a parylene insulating layer enhancing output acoustic pressure on a glass-coverslip which is commonly used in culturing cells. Due to the uniformity and high accuracy of stimulus waveform, tens of neuronal cell responses located on the transducer surface can be recorded simultaneously with fluorescence microscopy. By averaging the cell response traces from tens of cells, small changes to the low intensity ultrasound stimulations can be identified. In addition, the reduction of stimulus distortions made by standing wave generated from reflections between the transducers and other strong reflectors can be achieved by placing acoustic absorbers. Through the proposed ultrasound transducer, we could successfully observe the calcium responses induced by low-intensity ultrasound stimulation of 6 MHz, 0.2 MPa in astrocytes cultured on the transducer surface.

Design of 4Kb Poly-Fuse OTP IP for 90nm Process (90nm 공정용 4Kb Poly-Fuse OTP IP 설계)

  • Hyelin Kang;Longhua Li;Dohoon Kim;Soonwoo Kwon;Bushra Mahnoor;Panbong Ha;Younghee Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.509-518
    • /
    • 2023
  • In this paper, we designed a 4Kb poly-fuse OTP IP (Intellectual Property) required for analog circuit trimming and calibration. In order to reduce the BL resistance of the poly-fuse OTP cell, which consists of an NMOS select transistor and a poly-fuse link, the BL stacked metal 2 and metal 3. In order to reduce BL routing resistance, the 4Kb cells are divided into two sub-block cell arrays of 64 rows × 32 rows, with the BL drive circuit located between the two 2Kb sub-block cell arrays, which are split into top and bottom. On the other hand, in this paper, we propose a core circuit for an OTP cell that uses one poly-fuse link to one select transistor. In addition, in the early stages of OTP IP development, we proposed a data sensing circuit that considers the case where the resistance of the unprogrammed poly-fuse can be up to 5kΩ. It also reduces the current flowing through an unprogrammed poly-fuse link in read mode to 138㎂ or less. The poly-fuse OTP cell size designed with DB HiTek 90nm CMOS process is 11.43㎛ × 2.88㎛ (=32.9184㎛2), and the 4Kb poly-fuse OTP IP size is 432.442㎛ × 524.6㎛ (=0.227mm2).