• Title/Summary/Keyword: Stack cell

Search Result 583, Processing Time 0.034 seconds

The Effects of the Inclination on the Performance of dead-end operating PEM Fuel Cell (고분자 연료전지의 데드엔드 운전 시 기울임에 따른 성능 변화)

  • Jeong, Jee Hoon;Kho, Back Kyun;Han, In-Su;Shin, Hyun Khil;Hur, Tae Uk;Cho, Sung Baek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.89.2-89.2
    • /
    • 2011
  • In automotive applicatons or water vehicles, the polymer electrolyte membrane fuel cell(PEMFC) stack is keep moving while their operation. Especially the inclination environment can take a effect to fuel cell stack perfromance, because this condition can cause a bad effect to water exhaust of fuel cell stack. In this study, a large scale stack(over 100kW power) is inclined upto 30 degree in lengthwise and crosswise using stack lift equipment. And the stack is operated in 10~100% load. No significant change has appeared in crosswise inclined condition and lenthwise low angle. But in lenthwise large angle tilting condition, the fuel cell performance has significantly decreased. And this performance decrease is aggravated in low load. An active water exhaust device is applied to the stack to prevent the performance decrease. And in lenthwise large angle tilting condition, this device cause a good effect to fuel cell stack performance.

  • PDF

A Study on the Vibratory Characteristics of the Stack in Fuel Cell Vehicle at Driving Condition (연료전지 차량 주행시 스택의 진동 특성 연구)

  • Ju, Hyung-Jun;Kim, Gi-Hoon;Park, Jae-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.50-55
    • /
    • 2010
  • In recent years, the development of fuel cell vehicles has further accelerated because of environmental problem and petroleum resources shortage. The fuel cell vehicles have the stack which converts fuel to electricity. The stack is usually mounted by bush to isolate the vibration of chassis and body. This paper analyzed the vibratory characteristics of stack and chassis, body system. The wheel forces of fuel cell vehicle are measured to estimate the road load data. And the paths of vibration from wheel to stack are analyzed by CAE. According to the test and CAE results, the improvement of stack vibration are evaluated.

Study on Self-moving Cell Linear Motor Using Piezo-stack actuators (적층 압전 작동기를 이용한 Self-moving Cell 선형모터 연구)

  • 이진호;김재환;최관영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.371-375
    • /
    • 2001
  • The concept of a new linear motor that uses piezo-stack actuator is demonstrated. The working principle is far different from the conventional inchworm motor. This motor is based on the self-moving cell concept. The linear motor has three cells and each cell is constructed with one piezo-stack actuator and a shell structure. A cell train is constructed by connecting these cells and the cell train is fitted into a guide way with a proper interference. The cell train moves along the guide way, by activating each cell in succession. The moving motion of the motor is tested. Since this linear motor uses piezo-stack actuator with unified clamping cell, it can produce fast speed, high resolution and large push force.

  • PDF

Effect of stack configuration on the performance of 10W PEMFC stack (10W급 고분자 전해질 연료전지 스택의 구조적 차이에 다른 운전 특성 비교)

  • Yim, Sung-Dae;Kim, Byung-Ju;Sohn, Young-Jun;Yoon, Young-Gi;Yang, Tae-Hyun;Kim, Chang-Soo;Kim, Young-Chai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.286-286
    • /
    • 2009
  • A small PEM fuel cell has two different stack configurations such as active and passive stacks. The active stack has a distintion of high power density although it makes system complex by using alr blower and related BOPs resulting in large system volume. On the contrary, passive stack has an advantage of compact system because it doesn't need air supplying devices although it reveals relatively low stack power density. In this study we fabricated two 10W PEMFC stacks with different stack configurations, active and passive stacks, and tested their performance and stability. The active stack consists of 13cells with an active area of $5cm^2$. The passive stack has 12cells with an active area of $16cm^2$. When we compared the stack performance of those stacks, the active stack showed higher power density compared to the passive stack, particularly at high voltage regions. However, at low voltage and high current regions, the passive stack performance was comparable to the active stack. The stack stability was largely dependent on the fuel humidity, particularly for active stack. At low humidity conditions, the active stack performance was decreased continuously and the cell voltage distribution was not uniform showing seriously low cell voltage at center cells mainly due to the cell drying. The passive stack showed relatively stable behavior at low humidity and the stack performance was largely dependent on the atmospheric conditions.

  • PDF

Design of a Heat Release System for Fuel Cell Vehicles (연료전지 자동차 열방출 시스템의 설계)

  • Kim, Min-Soo;Kim, Sung-Chul;Park, Min-Su;Jung, Seung-Hun;Yoon, Seok-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.49-54
    • /
    • 2005
  • There is close relation between the heat generation in the fuel cell stack and the fuel performance. In PEM fuel cell vehicles, the stack coolant temperature is about $65^{\circ}C$, which is far lower than that for general automobile engine. Therefore, it is hard to release heat generated in the stack by using a radiator of limited size because of the reduced temperature difference between the coolant and the ambient air. In this study, indirect stack cooling system using $CO_2$ heat pump was designed and its stack cooling performance in releasing heat to the ambient was investigated. This work focuses on a series of processes that grasp the relation among the fuel cell power, the radiator capacity and the stack temperature. The purpose of this work is to find out a way to properly release sufficient amount of heat through the finite sized radiator, so that the slack power generation can not be deteriorated due to the stack temperature increase. The optimization between the compressor power consumption and the fuel cell output power can be carried out to maximize the performance of fuel cell system.

  • PDF

Design of a Heat Release System for Fuel Cell Vehicles (연료전지 자동차 열방출 시스템의 설계)

  • Kim, Sung-Chul;Park, Min-Su;Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.545-548
    • /
    • 2005
  • There is a close relation between the heat generation in the fuel cell stack and the fuel cell performance. In PEM fuel Gell vehicles, the stack coolant temperature is about $65^{\circ}C$, which is far lower than that for general automobile engine. Therefore, it is hard to release heat generated in the stack by using a radiator of limited size because of the reduced temperature difference between the coolant and the ambient air. In this study, indirect stack cooling system using $CO_2$ heat pump was designed and its stack cooling performance in releasing heat to the ambient was investigated. This work focuses on a series of processes that grasp the relation among the fuel cell power, the radiator capacity and the stack temperature. The purpose of this work is to find out a way to properly release sufficient amount of heat through the finite sized radiator, so that the stack power general ion can not be deteriorated due to the stack temperature increase. The optimization between the compressor power consumption and the fuel cel1 output power can be carried out to maximize the performance of fuel cell system.

  • PDF

Development of a 25kW-Class PEM Fuel Cell System for the Propulsion of a Leisure Boat (선박 추진용 25kW급 고분자전해질 연료전지 시스템 개발)

  • Han, In-Su;Jeong, Jeehoon;Kho, Back-Kyun;Choi, Choeng Hoon;Yu, Sungju;Shin, Hyun Khil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.271-279
    • /
    • 2014
  • A 25kW-class polymer electrolyte membrane (PEM) fuel cell system has been developed for the propulsion of a leisure boat. The fuel cell system was designed to satisfy various performance requirements, such as resistance to shock, stability under rolling and pitching oscillations, and durability under salinity condition, for its marine applications. Then, the major components including a 30kW-class PEM fuel cell stack, a DC-DC converter, a seawater cooling system, secondary battery packs, and balance of plants were developed for the fuel cell system. The PEM fuel cell stack employs a unique design structure called an anodic cascade-type stack design in which the anodic cells are divided into several blocks to maximize the fuel utilization without hydrogen recirculation devices. The performance evaluation results showed that the stack generated a maximum power of 31.0kW while maintaining a higher fuel utilization of 99.5% and an electrical efficiency of 56.1%. Combining the 30-kW stack with other components, the 25kW-class fuel cell system boat was fabricated for a leisure. As a result of testing, the fuel cell system reached an electrical efficiency of 48.0% at the maximum power of 25.6kW with stable operability. In the near future, two PEM fuel cell systems will be installed in a 20-m long leisure boat to supply electrical power up to 50kW for propelling the boat and for powering the auxiliary equipments.

Development of a Lightweight 200W Direct Methanol Fuel Cell Stack for UAV Applications and Study of its Operating Characteristics (II) (무인항공기용 200W 급 직접메탄올연료전지 경량화 스택 제작 및 작동 특성 연구 (II))

  • Kang, Kyung-Mun;Park, Sung-Hyun;Gwak, Geon-Hui;Ji, Hyun-Jin;Ju, Hyun-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.243-249
    • /
    • 2012
  • A lightweight 200W direct methanol fuel cell (DMFC) stack is designed and fabricated to power a small scale Unmanned Aerial Vehicle (UAV). The DMFC stack consists of 33-cells in which membrane-electrode assemblies (MEAs) having an active area of 88 $cm^2$ are sandwiched with lightweight composite bipolar plates. The total stack weight is around 3.485 kg and stack performance is tested under various methanol feed concentrations. The DMFC stack delivers a maximum power of 248 W at 13.2 V and $71.3^{\circ}C$ under methanol feed concentration of 1.2 M. In addition, the voltage of individual cell in the 33-cell stack is measured at various current levels to ensure the stability of DMFC stack operations. The cell voltage distribution data exhibit the maximum cell voltage deviation of 28 mV at 15 A and hence the uniformity of cell voltages is acceptable. These results clearly demonstrate that DMFC technology becomes a potential candidate for small-scale UAV applications.

Optimization of Fuel-cell stack design using CFD-ACE (CFD-ACE를 이용한 연료 전지 냉각판의 최적 설계)

  • 홍민성;김종민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.14-18
    • /
    • 2003
  • Feul-cell system consists of fuel reformer, stack and energy translator. Among these parts, slack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack, and control of coolant are needed. Especially, water or air is used as a coolant to dissipate heat. The different temperature of each electric cells after cooling and the high temperature of the stack affect the performance of the stack, Therefore, it is necessary that the relationship between coolant, healing rate, width of slack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.

  • PDF

Power Distribution Optimization of Multi-stack Fuel Cell Systems for Improving the Efficiency of Residential Fuel Cell (주택용 연료전지 효율 향상을 위한 다중 스택 연료전지 시스템의 전력 분배 최적화)

  • TAESEONG KANG;SEONGHYEON HAM;HWANYEONG OH;YOON-YOUNG CHOI;MINJIN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.4
    • /
    • pp.358-368
    • /
    • 2023
  • The fuel cell market is expected to grow rapidly. Therefore, it is necessary to scale up fuel cells for buildings, power generation, and ships. A multi-stack system can be an effective way to expand the capacity of a fuel cell. Multi-stack fuel cell systems are better than single-stack systems in terms of efficiency, reliability, durability and maintenance. In this research, we developed a residential fuel cell stack and system model that generates electricity using the fuel cell-photovoltaic hybrid system. The efficiency and hydrogen consumption of the fuel cell system were calculated according to the three proposed power distribution methods (equivalent, Daisy-chain, and optimal method). As a result, the optimal power distribution method increases the efficiency of the fuel cell system and reduces hydrogen consumption. The more frequently the multi-stack fuel cell system is exposed to lower power levels, the greater the effectiveness of the optimal power distribution method.