• Title/Summary/Keyword: Stack Temperature

Search Result 345, Processing Time 0.026 seconds

Development of Thermal Performance Tester for Non-Homogeneous Insulation Pannels Installed Vertically (수직으로 설치된 비균질 평판 단열재용 성능시험장치 개발)

  • Oh, Hong Young;Song, Ki O;Jeon, Hyun Ik;Cho, Sun Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.4
    • /
    • pp.153-157
    • /
    • 2016
  • In case of metal insulation, which is produced by stacking stainless steel sheets and air layers in a multi-stack manner at a specific thickness, insulation performance will be evaluated based on thermal transmittance rather than the intrinsic physical properties of each material such as thermal conductivity. However, there is no standard for measuring thermal transmittance targeted for non-homogeneous insulation which is used in relatively high temperature conditions such as a power station. In this study, the thermal conductivity of homogeneous insulation acquired by the standardized guard hot plate method and the thermal conductivity of homogeneous insulation measured by the newly developed performance tester were compared to verify the confidence level of the tester. As a result, thermal conductivity acquired by the newly developed thermal transmittance tester was about 6% higher than the thermal conductivity measured by the existing guard hot plate method under the anticipated service temperature conditions.

Rubber gaskets for fuel cells-Life time prediction through acid ageing

  • Kim, Mi-Suk;Kim, Jin-Kuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.47-51
    • /
    • 2007
  • The present paper reports the life time prediction of Acrylonitrile-Butadiene rubber (NBR) fuel cell gasket materials as a function of operational variables like acid concentration, ageing time and temperature. Both material and accelerated acid-heat aging tests were carried out to predict the useful life of the NBR rubber gasket for use as a fuel cell stack. The acid ageing of the gasket compounds has been investigated at 120, 140 and $160^{\circ}C$, with aging times from 3 to 600 h and increasing acid ($H_2SO_4$) concentrations of 5, 6, 7 and 10 vol%. Material characteristics the gas compound such as cross-link density, tensile strength and elongation at break were studied. The hardness of the NBR rubber was found to decrease with decreasing acid concentration at both 120 and $140^{\circ}C$, but at $160^{\circ}C$ interestingly the hardness of the NBR rubber increased abruptly in a very short time at different acid concentrations. The tensile strength and elongation at break were found to decrease with increase in both the acid concentrate ion & temperature. The life time of the compounds were evaluated using the Arrhenius equation.

  • PDF

PCDD/PCDFs Emission and Operating Conditions of Domestic MSW Incinerators (국내 도시 쓰레기 소각로에서의 운전조건과 다이옥신 배출량과의 상관관계에 관한 연구)

  • Yang, Won;Shin, Donghoon;Choi, Jinhwan;Choi, Sangmin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1755-1762
    • /
    • 1998
  • In order to minimize emission of polychlorinated dibenzo dioxins and polychlorinated dibenzo furans (PCDD/PCDFs) from municipal solid waste incinerators, it is important to maintain optimized operating conditions along with the system modification/improvement. Operating conditions of MSW incinerator make very complicated influence on formation of PCDD/PCDFs in each unit apparatus. For revealing these influences, concentrations of PCDD/PCDFs are measured from the stack and from the fly ash, while monitoring the plant operating conditions. The effects are grouped into 3 main categories, combustion conditions, de Novo synthesis effects, and adsorption/destruction effects in the flue gas treatment system. Interpretation of the results showed that de Novo synthesis effect, reformation by metalic catalyst, especially Cu in fly ash in the temperature range of $250{\sim}500^{\circ}C$, is found to influence most dominantly on the concentration of PCDD/PCDFs. A plausible mathmatical model for predicting concentration of PCDD/PCDFs is proposed, and discussed.

Thermal Instability of La0.6Sr0.4MnO3 Thin Films on Fused Silica

  • Sun, Ho-Jung
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.482-485
    • /
    • 2011
  • $La_{0.6}Sr_{0.4}MnO_3$ (LSMO) thin films, which are known as colossal magnetoresistance materials, were prepared on fused silica thin films by conventional RF magnetron sputtering, and the interfacial reactions between them were investigated by rapid thermal processing. Various analyses, namely, X-ray diffraction, transmission electron microscopy combined with energy adispersive X-ray spectrometry, and secondary ion mass spectrometry, were performed to explain the mechanism of the interfacial reactions. In the case of an LSMO film annealed at $800^{\circ}C$, the layer distinction against the underplayed $SiO_2$ was well preserved. However, when the annealing temperature was raised to $900^{\circ}C$, interdiffusion and interreaction occurred. Most of the $SiO_2$ and part of the LSMO became amorphous silicate that incorporated La, Sr, and Mn and contained a lot of bubbles. When the annealing temperature was raised to $950^{\circ}C$, the whole stack became an amorphous silicate layer with expanded bubbles. The thermal instability of LSMO on fused silica should be an important consideration when LSMO is integrated into Si-based solid-state devices.

A Study on Development of High Voltage Mica Capacitors (고전압 마이카 커패시터 개발에 관한 연구)

  • Yun, Eui-Jung;Choi, Cheal-Soon;Kim, Jae-Wook;Lee, Dong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1229-1234
    • /
    • 2008
  • In this work, ultra high-voltage (17 - 50 kV AC), reliable 80 pF mica capacitors for partial discharge system application were investigated. Mica was used as the dielectric of the capacitors. Using the conservative design rule, over 3 individual $50\;{\mu}m$ thick mica sheets with a size of 30mm{\times}35mm were used with lead foils to form a parallel capacitor element and 20 mica sheets were interleaved with lead foils to form a series stack of parallel capacitor element to meet the requirements of the capacitors. The dimensions of the fabricated 80 pF capacitors for 17 kV AC and 50 kV AC were $90\;mm{\times}90\;mm$ and $95\;mm{\times}180\;mm$, respectively. The high-frequency characteristics of the capacitance (C) and dissipation factor (D) of the developed capacitors were measured using a capacitance meter. The developed capacitors exhibited C of 79.5 - 87.5 pF, had D of 0.001% over the frequency ranges of 150 kHz to 50 MHz, had a self-resonant frequency of 65 MHz, and showed results comparable to those measured for the capacitors prepared recently by $Adwel^{Tm}$. The developed capacitors also showed excellent characteristics for thermal shock test and temperature cycling test.

The Characteristic of Titanium Composites Including of Nano-sized TiNx for Stack Separator

  • Park, Sung-Bum;Ban, Tae-Ho;Woo, Heung-Sik;Kim, Sung-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • The fabrication of interconnect from titanium powders and $TiN_x$ powders is investigated. Corrosion-resistant titanium and $TiN_x$ are used as reinforcement in order to reveal high heat and corrosion resistance at the elevated temperature. We fabricated the plates for interconnect reinforced with $TiN_x$ by mixing titanium powders with 10 wt.% of nano-sized $TiN_x$. Spark Plasma Sintering (SPS) was chosen for the sintering of these composites. The plate made of titanium powders and $TiN_x$ powders demonstrates higher corrosion resistance than that of the plate of titanium powders alone. The physical properties of specimens were analyzed by performing hardness test and biaxial strength test. The electrochemical properties, such as corrosion resistance and hydrogen permeability at high temperature, were also investigated. The microstructures of the specimens were investigated by FESEM and profiles of chemical compositions were analyzed by EDX.

Modification of Coupling Algorithm between Mass and Enthalpy Conservation for Modified CAU_ESCAP (제연해석 프로그램의 질량 및 엔탈피 보존식의 연계알고리즘 개선연구)

  • Bae, Sung-Ryong;Ko, Gwon-Hyun;Hong, Ki-Bae;Ryou, Hong-Sun
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.102-110
    • /
    • 2011
  • For decreasing of the casualties and designing of the smoke control systems in the ultra high-rise building, the programs for analysis of smoke control were developed for prediction of smoke spread and distributions of pressure and temperature in building fire situation. In this study, coupling algorithm between mass and enthalpy conservations was modified for improving the applicability of the CAU_ESCAP which program can consider the energy transfer. The fire situation in ultra high-rise building was applied by using the modified CAU_ESCAP. Results of pressure difference predicted by modified CAU_ESCAP are higher than results of ASCOS as stack effect is generated due to the increasing of stairway temperature. Moreover, theoretically, the result of the neutral plane is more accurate than the result of ASCOS, in fire situation of ultra high-rise building.

Design Performance Analysis of Micro Gas Turbine-Organic Rankine Cycle Combined System (마이크로 가스터빈과 유기매체 랜킨사이클을 결합한 복합시스템의 설계 성능해석)

  • Lee Joon Hee;Kim Tong Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.536-543
    • /
    • 2005
  • This study analyzes the design performance of a combined system of a recuperated cycle micro gas turbine (MGT) and a bottoming organic Rankine cycle (ORC) adopting refrigerant (R123) as a working fluid. In contrast to the steam bottoming Rankine cycle, the ORC optimizes the combined system efficiency at a higher evaporating pressure. The ORC recovers much greater MGT exhaust heat than the steam Rankine cycle (much lower stack temperature), resulting in a greater bottoming cycle power and thus a higher combined system efficiency. The optimum MGT pressure ratio of the combined system is very close to the optimum pressure ratio of the MGT itself. The ORC's power amounts to about $25\%$ of MGT power. For the MGT turbine inlet temperature of $950^{\circ}C$ or higher, the combined system efficiency, based on shaft power, can be higher than $45\%$.

ALD of Nanometal Films and Applications for Nanoscale Devices

  • Kim, Hyung-Jun
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.89-101
    • /
    • 2005
  • Among many material processing related issues for successful scaling down of devices for the next 10 years or so, the advanced gate stack and interconnect technology are two most critical research areas, which need technical innovation. The introduction of new metallic films and appropriate processing technologies are required more than ever. Especially, as the device downscaling continues well into sub 50 nm regime, the paradigm for metal nano film deposition technique research has been shifted to high conformality, low growth temperature, high quality with uniformity at large area wafers. Regarding these, ALD has sparked a lot of interests for a number of reasons. The process is intrinsically atomic in nature, resulting in the controlled deposition of films in sub-monolayer units with excellent conformality. In this paper, the overview on the current issues and the future trends in device processing technologies related to metal nano films as well as the R&D trends in these applications will be discussed. The focus will be on the applications for metal gate, capacitor electrode for DRAM, and diffusion barriers/seed layers for Cu interconnect technology.

Gasification melting characteristics of Automobile shredder residue in 5t/d shaft pilot plant (5톤/일 shaft형 pilot plant에서 자동차 폐차 잔재의 가스화 용융 특성)

  • Roh, SeonAh;Kim, WooHyun;Yun, JinHan;Hong, ByeongKwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.160-160
    • /
    • 2010
  • ELVs (End-of-Vehicles) in Korea incrasease continusely because of increase of used car. Automobile Shredder Residue (ASR) is final product of ELVs (End-of-Vehicles) after recycling. Automobile Shredder Residue are composed of light and heavy fluffs and soil/dust. In this study, 5 ton/day pilot plant of shaft type has been designed and constructed and 15 times of test run were performed. For the stable operation, operation conditions such as the amount of fed ASR and cokes, air flow and temperature in the gasification melting system have been changed and the composition of the produced gas such as $H_2$, CO and $CH_4$ and air pollution compound including dioxin discharged from the stack have been analyzed.

  • PDF