• 제목/요약/키워드: Stack Temperature

검색결과 343건 처리시간 0.029초

소면적 PEM연료전지 성능개선 연구 (A Study on Performance Improvement in PEMFC)

  • 천광우;박창권;이호열;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.291-300
    • /
    • 2004
  • Performance of PEMFC is affected by many factors such as that of MEA, configuration of flow field, operating conditions, humidification, cooling and so on. In this study, in order to improve the performance of fuel cell, a small area fuel cell stack was made and its performance was tested under various operating conditions. Stack consists of 3 single PEM fuel cells. Channel is serpentine type and the active area of the electrode is $50cm^2$. The test results show that the peak power is 60W at $70^\circ{C}$ of stack temperature with humidification condition.

전기화학식 수소 압축기 직렬 스택 기술 (Series Stacking Techniques of Electrochemical Hydrogen Compressors)

  • 조상훈;김창종;김민수;김동규
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.168-174
    • /
    • 2024
  • The electrochemical hydrogen compressor was run under diverse operating conditions in order to probe its capabilities and limitations. It was found that, unlike single-cell operations, the electrochemical hydrogen compressor stack performance improved with a rise in temperature. This improvement in performance was attributed to the gradual weakening of the electro-osmotic drag over time, impacting membrane resistance. As a result of these experiments, compression levels, up to an impressive 120 bar, using the electrochemical hydrogen serial stack were achieved.

1 kW 고체산화물 연료전지 스택의 내부개질 특성 연구 (Study on Internal Reforming Characteristic of 1 kW Solid Oxide Fuel Cell Stack)

  • 최영재;안진수;이인성;배홍열;문지웅;이종규
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.377-383
    • /
    • 2017
  • This paper presents the performance characteristics of a 1 kW solid oxide fuel cell (SOFC) stack under various internal reforming and fuel utilization conditions. The Research Institute of Industrial Science & Technology (RIST) developed the 9-cell stack using a $20{\times}20cm^2$ anode supported planar cell with an active area of $324cm^2$. In this work, current-voltage characteristic test, fuel utilization test, continuous operation, and internal reforming test were carried out sequentially for 765 hours at a furnace temperature of $700^{\circ}C$. The influence of fuel utilization and internal reforming on the stack performance was analyzed. When the 1 kW stack was tested at a current of 145.8 A with a corresponding fuel utilization of 50-70% (internal reforming of 50%) and air utilization of 27%, the stack power was approximately 1.062-1.079 kW. Under continuous operation conditions, performance degradation rate was 2.16%/kh for 664 hours. The internal reforming characteristics of the stack were measured at a current of 145.8. A with a corresponding fuel utilization of 60-75%(internal reforming of 50-80%) and air utilization of 27%. As fuel utilization and internal reforming ratio increased, the stack power was decreased. The stack power change due to the internal reforming ratio difference was decreased with increasing fuel utilization.

Characterization of Cu2ZnSnSe4 Thin Films Selenized with Cu2-xSe/SnSe2/ZnSe and Cu/SnSe2/ZnSe Stacks

  • Munir, Rahim;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae
    • 한국재료학회지
    • /
    • 제23권3호
    • /
    • pp.183-189
    • /
    • 2013
  • $Cu_2ZnSn(S,Se)_4$ material is receiving an increased amount of attention for solar cell applications as an absorber layer because it consists of inexpensive and abundant materials (Zn and Sn) instead of the expensive and rare materials (In and Ga) in $Cu(In,Ga)Se_2$ solar cells. We were able to achieve a cell conversion efficiency to 4.7% by the selenization of a stacked metal precursor with the Cu/(Zn + Sn)/Mo/glass structure. However, the selenization of the metal precursor results in large voids at the absorber/Mo interface because metals diffuse out through the top CZTSe layer. To avoid the voids at the absorber/Mo interface, binary selenide compounds of ZnSe and $SnSe_2$ were employed as a precursor instead of Zn and Sn metals. It was found that the precursor with Cu/$SnSe_2$/ZnSe stack provided a uniform film with larger grains compared to that with $Cu_2Se/SnSe_2$/ZnSe stack. Also, voids were not observed at the $Cu_2ZnSnSe_4$/Mo interface. A severe loss of Sn was observed after a high-temperature annealing process, suggesting that selenization in this case should be performed in a closed system with a uniform temperature in a $SnSe_2$ environment. However, in the experiments, Cu top-layer stack had more of an effect on reducing Sn loss compared to $Cu_2Se$ top-layer stack.

직접메탄올 연료전지용 다층스택의 성능특성 (Performance of multi-cell stack for direct methanol fuel cells)

  • 이창형;정두환;김창수;신동열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1870-1872
    • /
    • 1999
  • Performance of 20-cell stack for direct methanol fuel cell (DMFC) was tested at constant temperature. Electrode evaluation used to the stack was tested by the performance of a single cell. A new composite electrode prepared from active carbon cloth and high porous active carbon was developed for hydrophilic layer of the cell. Characteristics of a single cell using the composite electrode showed the current density of $500mA/cm^2$ at the cell voltage of 0.4V at $120^{\circ}C$. For the operating of 20 days. the cell voltage at constant cell current densty of $100mA/cm^2$ was slightly reduced from 0.62V to 0.53V with the cell voltage decay rate of 14.5%. Power of 20-cell stack at 5.3V, $100^{\circ}C$ was about 180W.

  • PDF

이동 전원용 공랭식 고분자 연료전지의 제작 및 운전 특성 연구 (Operating characteristics of an air cooling PEMFC for portable application)

  • 손영준;박구곤;양태현;윤영기;이원용;임성대;김창수
    • 신재생에너지
    • /
    • 제1권1호
    • /
    • pp.72-78
    • /
    • 2005
  • Optimal design and proper operation are important to get aimed output power of a polymer electrolyte membrane fuel cell (PEMFC) stack. An air cooling fuel cell stack is widely used in sub kW PEMFC systems. The purpose of this study is to analyze operating conditions affecting the performance of the air cooling PEMFC which is designed for portable application. In portable applications, air cooling stack is difficult to maintain well balanced operating conditions. The importart parameters are the relative humidity, the temperature of the stack, the utilization of reactant gas and so on. in this study, a 500W air cooling PEMFC was fabricated and tested to evaluate the design performance and to determine optimal operating conditions. Moreover, basic modeling also is carried out. These results can be used 3s design criteria and optimal operating conditions for portable PEMFCs

  • PDF

Ag 집전체를 적용한 평판형 SOFC 단전지 (Single Cell Stacked Planar Type SOFC Assembled Using a Ag-Current Collector)

  • 조남웅;황순철;이인성
    • 한국세라믹학회지
    • /
    • 제44권12호
    • /
    • pp.720-726
    • /
    • 2007
  • Current collectors of SOFC play a significant role on the performance of power generation. In this study a single cell stacked SOFC was assembled using Ag-mesh as a cathode current collector, and evaluated its performance. No gas leakages of the single cell stack occurred in the tests of gas detection and OCV measurement. The OCV and initial power of the stack were 1.09V and $0.45W/cm^2$, respectively, under the flow rates of air at 2,500 cc/min and $H_2$ at 1,000 cc/min at the test temperature of $750^{\circ}C$. A degradation rate of 44.0% was measured during the prolonged time of 307 h. The relatively low durability of the tested single cell stack was found to be the evaporation of Ag-mesh at the current corrector.

실리콘으로 제작된 소형 연료 전지에서 가습 조건의 최적화 (Humidification Optimization in Silicon-based Miniaturized Fuel Cell)

  • 권오중;원호연;김재정
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.104-109
    • /
    • 2007
  • 연료 전지의 소형화를 위하여 흑연(graphite)를 기본으로 하는 분리판을 실리콘분리판으로 대체하였으며, 실리콘 분리판과 active area가 $4cm^2$인 MEA (membrane electrode assembly)와 결합하여 단위 전지를 제작하였다. 단위 전지에 공급되는 수소와 산소의 공급량은 고정하고 가습기의 구동 온도만을 변화시키면서 단위 전지의 성능을 확인하고 최적의 가습 조건을 결정하였다. 또한 가습 조건이 실리콘으로 제작된 연료 전지 스택에 미치는 영향을 알아보기 위하여 실리콘 분리판과 2개의 MEA로 이루어진 스택을 제작하여 가습 조건의 영향을 알아보고 실리콘 분리판으로 제작된 연료전지 스택의 문제점 및 특징을 알아보았다.

고고도 무인기용 수전해 셀 및 스택의 제작 및 성능 평가 (Evaluation of the Performance of Water Electrolysis Cells and Stacks for High-Altitude Long Endurance Unmanned Aerial Vehicle)

  • 정혜영;이준영;윤대진;한창현;송민아;임수현;문상봉
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.341-348
    • /
    • 2016
  • The experiments related on structure and water electrolysis performance of HALE UAV stack were conducted in this study. Anode catalyst $IrRuO_2$ was prepared by Adam's fusion methods as 2~3 nm nano sized particles, and the cathode catalyst was used as commercial product of Premetek. The MEA (membrane electrode assembly) was manufactured by decal methods, anode and anode catalytic layers were prepared by electro-spray. HALE stack was composed of 5 multi-cells as $0.2Nm^3/hr$ hydrogen production rate with hydrogen pressure as 10 bar. The water electrolysis performance was investigated at atmospheric pressure and temperature of $55^{\circ}C$. Best performance of HALE UAV stack was recorded as cell voltage efficiency as 86%.

군 운용환경에서 이차전지 충전을 위한 경량화 DMFC 시스템 개발 (Development of Lightweight DMFC System for Charging Secondary Battery in Military Operational Environment)

  • 이수원;곽건희;노정호;조영래;김도연;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.481-491
    • /
    • 2017
  • In this study, we developed 300 W lightweight DMFC system for charging secondary battery in small unit military operation. In order to reduce the volumetric shape and weight of the system considering the environment of the individual soldier's, the arranging of system components has been optimized. A metal bipolar plates made of STS-470FC have been implemented to the DMFC stack to meet the weight demand of the system. As a result of the performance test of the stack, the target value was satisfied by outputting 561 W exceeding 24% of the stack output 450 W required to output 300 W required for the entire system. Moreover, 2,655 hours exceeding 1,000 hours also has been satisfied. To ensure good robustness of the metallic bipolar plate based DMFC stack, finite element method based simulations are conducted using a commercial ANSYS Fluent software.