• Title/Summary/Keyword: Stable angle

Search Result 656, Processing Time 0.026 seconds

A study of Double Sheet Multi-forming Equipment (2겹 판재 멀티포밍 장치에 관한 연구)

  • Yun, Jae-Woong;Son, Ok-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.49-55
    • /
    • 2017
  • Most motor cases adopt deep drawing products, which are excellent in waterproof functions, concentricity, right angle, and quality. In addition, the blower motor and seat motor, which are installed in the car interior and do not require waterproof function, adopts a multi-forming manufacturing method. The deep drawing process requires an expensive transfer press that can digest approximately 12 processes, such as drawing, trimming and piercing. On the other hand, products can be produced with low investment because the multi-forming method is composed of one multi-forming machine or one multi-forming machine and one press. The multi-forming machine is a high-priced facility that is mostly imported and a bending / shearing process multi-foaming machine, which was developed by domestic small and medium-sized enterprises, is not enough to reduce the production cost. An integral multi - forming machine is used as a limited working method for thin material and small products. A large product and thick material has a high shear load. A large product and thick material has a high shear load and uses a single crank press. After blanking, the worker manually feeds the material to a multi-forming machine. When the bending operation is performed in the multi-forming machine, it is transferred to the press again to calibrate the dimensions. This variance in work processes has resulted in lower cost competitiveness due to the lower productivity, quality issues, and excessive operator input. The aim of this study was to establish a stable and cost - effective production system through bending / shearing process separation and facility automation.

Numerical Analysis of Self-Supported Earth Retaining Wall with Stabilizing Piles (2열 자립식 흙막이 공법의 거동특성에 관한 수치해석적 연구)

  • Sim, Jae-Uk;Jeong, Sang-Seom;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.35-46
    • /
    • 2015
  • In this study, the behavior of self-supported earth retaining wall with stabilizing piles was investigated by using a numerical study and field tests in urban excavations. This earth retaining wall can provide stable support against lateral earth pressures through its use of stabilizing piles that provide passive resistance to lateral earth pressures arising due to ground excavations. Field tests at two sites were performed to verify the performance of instrumented retaining wall with stabilizing piles. Furthermore, detailed 3D numerical analyses were conducted to provide insight into the in situ wall behavior. The 3D numerical methodology in the present study represents the behavior of the self-supported earth retaining wall with stabilizing piles. A number of 3D numerical analyses were carried out on the self-supported earth retaining wall with stabilizing piles to assess the results stemming from wide variations of influencing parameters such as the soil condition, the pile spacing, the distance between the front pile and the rear pile, and the pile embedded depth. Based on the results of the parametric study, the maximum horizontal displacement and the maximum bending moment significantly decreased when the retaining wall with stabilizing piles is used. Moreover, the horizontal displacement reduction effect of influencing parameters such as the pile spacing and the distance between the front pile and the rear pile is more sensitive in sandy soil, with a higher friction angle compared to clayey soil. In engineering practice, reducing the pile spacing and increasing the distance between the front pile and the rear pile can effectively improve the stability of the self-supported earth retaining wall with stabilizing piles.

Analysis of Deformation and Stability of Slope at the Wiri Region of Local Road 999 Nearby Andong, Gyeongsangbukdo in Korea. (999번 지방도로 경상북도 안동시 위리 지역의 사면 변형 및 안정성 분석)

  • 장현식;장보안
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • Heaving of road and subsidence of slope took place at the Wiri region of the local highway 999 in Gyeongsangbukdo, Korea after heavy rain in the next year of construction. Although the state government had performed remedial treatments by reducing the angle and the height of the slope, deformation had never stopped. Therefore, we have preformed the analysis of deformation and stabilityof the slope. Study area consists of the Cretaceous shale, siltstone and sandstone and two faults are found. The major deformation occurred by sliding of rock mass along faults after heavy rain because not only thepore pressure at the fault plane and the unit weight of sliding mass increased, but did the shearstrength of saturated fault clay become very low. The decrease in shear strength of saturated fault clayis the major factor among the reasons for deformation. Numerical simulations using limit equilibriummodel, finite difference model and finite element model were performed for eight cross sections.Although safety factors are above 1.7 during the dry season, they become below 1.0 when groundwaterlevel raises to surface. The maximum displacement is about 15-3Ocm. However, safety factors increasedto above 2.4 and the maximum displacement is below 2.08cm after remedial treatment, Indicating thatthe slope becomes stable.

  • PDF

A Case of Superior Vena Cava Syndrome Caused by Klebsiella Pneumonia (폐렴간균 폐렴에 의해 유발된 상대정맥 증후군 1예)

  • Kim, Ju-Young;Lim, Chae-Man;Kim, Seon-Hee;Chu, Yun-Ho;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.1
    • /
    • pp.58-62
    • /
    • 1994
  • Superior vena cava(SVC) syndrome is mostly related to a malignant process, but many different benign causes have also been described. We report a case of SVC syndrome caused by Klebsiella pneumonia diagnosed by sputum culture and serial chest X-ray changes. A 27-year-old man had been in stable health until three days before admission, when he complained of pleuritic chest pain, facial flushing, and shortness of breath. Examination of the head and neck disclosed edema of face and both arms, and jugular venous distention to the angle of the jaw. The chest auscultation revealed decreased breath sound without crack1e on right upper lung field. The chest roentgenogram showed homogenous air space consolidation on right upper lobe, asociated with downward displacement of minor fissure and contralateral displacement of trachea, but air bronchogram was not seen. We began antibiotic therapy under impression of pneumonia after available culture was taken from blood and sputum. SVC scintigraphy showed stasis of drain of right brachiocephalic vein at the proximal portion with reflux into the right internal jugular vein and faintly visible SVC via the collaterals. Sputum culture revealed Klebsiella pneumoniae. Antibiotic therapy resulted in a cure of infection and disappearance of facial swelling. Follow-up SVC scintigraphy after 20 days showed normal finding. We first report a case of SVC syndrome caused by klebsiella pneunonia.

  • PDF

Study on the Calibration of a Full-Polarimetric Scatterometer System at X-band (X-밴드 완전 편파 Scatterometer 시스템 보정에 관한 연구)

  • Hwang, Ji-Hwan;Park, Seong-Min;Kwon, Soon-Gu;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.408-416
    • /
    • 2010
  • A study on the calibration of an X-band HPS(Hongik Polarimetric Scatterometer) system for ground-based operation is presented in this paper. In order to calibrate the scatterometer system, the degree of its distortions are analyzed by comparison between theoretical- and measured-values using the theoretically well-known calibration targets such as a metal sphere, a trihedral corner reflector(CR) and a metal cylinder. The calibration works in the field conditions depend on the precise and stable measurements of those calibration target. we present a measurement technique, so-called, an automatic 2-D target-scanning technique, using the incidence-angle(${\xi}-$ and ${\phi}-$ directions) control of HPS system. Then, we used STCT(Single-Target Calibration Technique) and GCT(General Calibration Technique) to calibrate a distortion of the scatterometer system, and measured the polarimetric RCS(Radar Cross Section) and phase-difference of a trihedral-CR as a test-target to verify the accuracy of the calibration technique. Then, three different types(i.e., 10, 20, 30 cm) of trihedral-CR were used. we obtained the error ranges about ${\pm}1.0$dB, ${\pm}0.5$ dB in a polarimetric RCS and about $-20^{\circ}{\sim}0^{\circ}$ and ${\pm}5^{\circ}$ in the co-polarized phase-difference by using the GCT and STCT, respectively.

The Synthesis and Properties of Nonlinear Optical Polyquinonediimine Containing Mono-Azobenzene Group in the Side Chain (곁사슬에 모노-아조벤젠기를 갖는 비선형 광학 폴리퀴논디이민의 합성과 성질에 관한 연구)

  • 이상배;양정성;박동규
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.737-743
    • /
    • 2000
  • Polyquinonediimines (PQDI) which have stable structure on heat and contains mono-azobenzene in the side chain were synthesized by means of condensation polymerization under TiCl$_4$. The synthesized monomers and polymers were identified by FT-IR, $^1$H-NMR, and elementary analysis. Especially, PQDI was comfirmed by the double-bonding peak of >C=N appeared near 1625 $cm^{-1}$ / by means of FT-IR spectrum. PQDI containing mono-azobenzene group in both side chains wat not soluble in non-polar solvents at all but partially soluble in the polar solvents having small dielectric constant, and dissolved in the strong acid such as sulfuric acid and $CH_3$SO$_3$H. Molecular weight distribution of PQDI measured by GPC showed 1.74. It was confirmed through X-ray diffraction analysis that the polymer was partially crystalline at the low angle region, but amorphous after heat treatment at 1$25^{\circ}C$. The glass transition temperature (T$_{g}$ ) of synthesized polymer was measured as 1$25^{\circ}C$ by differential scanning calorimetry. The SHG value for $\chi$$^{(2)}$ after poling at 1$25^{\circ}C$ was 8.6 pm/V (λ=1.542 ${\mu}{\textrm}{m}$). The SHG value slowly decreased with time from the start but appeared temporal stability after 100 hours.

  • PDF

Simulation of Various Baffle Types in a Constructed Wetland Sedimentation Tank using CFD (CFD를 이용한 Hybrid 인공습지의 초기침강지 저류판 구조 모의)

  • Noh, Taegyun;Jeon, Jechan;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.324-329
    • /
    • 2016
  • Constructed wetlands are widely applied in urban and rural areas for various purposes such as pollutants reduction, acquisition of eco-spaces and habitats, flooding reduction, acquisition of water resources and environmental education. Since the design of constructed wetlands utilizes ecosystems, special consideration must be given to ecological mechanisms, environmental mechanisms and hydrological mechanisms. To ensure the sustainable functionality of constructed wetlands, it is necessary to achieve stable flow rate and velocity, and remove sediments to ensure sufficient space for detention. To enhance the efficiency of constructed wetland sedimentation basins, this study determined the optimal position for baffle installation, and applied Computational Fluid Dynamics (CFD) to the cross-sectional design of wetlands. CFD analysis revealed that the decrease in flow velocity with baffle installation enhanced the efficiency of sedimentation of particulate matters. Vertical baffles had higher sedimentation efficiency than those with an inclined angle. When vertical baffles were installed in the sedimentation basin of a hybrid constructed wetland to reduce non-point source pollutants in urban areas, the average flow velocity within the basin decreased by 10~30%, while the sedimentation efficiency improved by 1.3~1.5 times. The application of CFD to constructed wetlands is expected to improve the cost efficiency of designing hybrid constructed wetlands with high removal efficiency.

Application of neural network for airship take-off and landing mode by buoyancy control (기낭 부력 제어에 의한 비행선 이착륙의 인공신경망 적용)

  • Chang, Yong-Jin;Woo, Gui-Ae;Kim, Jong-Kwon;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.84-91
    • /
    • 2005
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn't give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed. The weight value of RBFN is acquired by learning which to reduce the error between desired input output through and airship dynamics to impress the disturbance. As a result of simulation, the controller using the RBFN is superior to PID controller which maximum error is 15M.

Correlation of Tectolineaments and Discontinuities in connection with Slope Failure (사면 붕괴와 관련 구조선 분석과 불연속면의 상관성 연구)

  • Baek, Yong;Koo, Ho-Bon;Kim, Seung-Hyun
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.303-313
    • /
    • 2001
  • A cut-slope near Guam-Ri Hwado-Eup Namyangju-Si Kyunggi-Do collapsed during a heavy rainfall over 400mm at 28th of August 2000. The cut-slope collapse reportedly developed mainly by block sliding along a set of discontinuities, although slope angle of the cut-slope was 40$^{\circ}$(1:1.2) that agrees with the road construction criteria. This study aims to analyze differences and correlations among several data-collecting methods limited to discontinuity analysis related with cut-slope collapse. This study started with analysing discontinuity surface characteristics, geology of the country rock and orientations of the discontinuities directly related with the collapse. Analysis of aerial photos around the study area provided regional lineament data, and discontinuity plane description and measurements were collected from core logging and Borehole Image Processing System (BIPS). Spearmans correlation ranking coefficient method was used to get correlation of discontinuity planes according to analysis methods. The result suggests that the correlation coefficient is ${\gamma}_s$ = 0.91 Plus, stability analysis of discontinuity plane orientation data using equal-area stereonet revealed that the study area is unstable to planar failure. This study suggests that the cut-slope angles currently applied should be shallower and that significant attention is required to orientation distribution of discontinuities existed in cut-slopes studies.

  • PDF

The Kinematic Analysis of Handspring Salto Forward Piked (핸드스프링 몸접어 앞공중돌기동작의 운동학적 분석)

  • Kwon, Oh-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.145-153
    • /
    • 2007
  • The purpose of this study is to compare and analyze the phase-by-phase elapsed time, the COG, the body joint angle changes and the angular velocities of each phase of Handspring Salto Forward Piked performed by 4 college gymnasts through 3D movement analysis program. 1. The average elapsed time for each phase was .13sec for Phase 1, .18sec for Phase 2, .4sec for Phase 3, and .3sec for Phase 5. The elapsed time for Phase 1 to Phase 3 handspring was .35sec on average and the elapsed time for Phase 4 to Phase 5 handspring salto forward piked was .7sec on average. And so it showed that the whole elapsed time was 1.44sec. 2. The average horizontal changes of COG were 93.2 cm at E1, 138. 5 cm at E2, 215.7 cm at E3, 369.2 cm at E4, 450.7 cm at E5, and 553.1 cm at E6. The average vertical changes of COG were 83.1 cm at E1, 71.3 cm at E2, 78.9 cm at E3, 93.7 cm at E4, 150.8 cm at E5, and 97.2 cm at E6. 3. The average shoulder joint angles at each phase were 131.6 deg at E1, 153.5 deg at E2, 135.4 deg at E3, 113.4 deg at E4, 39.6 deg at E5, and 67.5 deg at E6. And the average hip joint angles at each phase were 82.2 deg at E1, 60 deg at E2, 101.9 deg at E3, 161.2 deg at E4, 97.7 deg at E5, and 167 deg at E6. 4. The average shoulder joint angular velocities at each phase were 130.9deg/s E1, 73.1 deg/s at E2, -133.9 deg/s at E3, -194.4 deg/s at E4, 29.4 deg/s at E5, and -50.1 deg/s at E6. And the average hip joint angular velocities at each phase were -154.7 deg/s E1, -96.5 deg/s at E2, 495.9 deg/s at E3, 281.5 deg/s at E4, 90.3 deg/s at E5, and 181.7 deg/s at E6. The results shows that, as for the performance of handspring salto forward piked, it is important to move in short time and horizontally from the hop step to the point to place the hands on the floor and jump, and to stretch the hip joints as much as possible after the displacement of the hands and to keep the hip joints stretched and high in the vertical position at the takeoff. And it is also important to bend the shoulder joints and the hip joints fast and spin as much as possible after the takeoff, and to decrease the speed of spinning by bending he shoulder joints and the hip joints quickly after the highest point of COG and make a stable landing.