• Title/Summary/Keyword: Stabilized Interface

Search Result 70, Processing Time 0.039 seconds

Effect of Stabilization Processing Conditions on the Thermal Shrinkage and the Thermal Stability of Rayon Fabrics Untreated and Surface-Treated with Phosphoric Acid (인산처리 유·무에 따른 레이온직물의 열수축과 열안정성에 미치는 안정화 공정 조건의 영향)

  • Cho, Donghwan;Lee, Jongmoon;Park, Jong Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.5 no.3
    • /
    • pp.10-17
    • /
    • 2004
  • We investigated the effect of stabilization processing parameters on the thermal shrinkage, thermal stability and microstructure of rayon fabrics stabilized under various conditions such as heating rate, stabilization temperature, atmosphere gas, and chemical treatment. The presence and absence of phosphoric acid treatment and the heating rate have most importantly influenced the thermal shrinkage and the weight change of rayon fabrics. Especially, the phosphoric acid treatment decreases the reduction of thickness, length, and weight of the fabrics by about 80%, 20%, and 26%, respectively, in comparison with the untreated counterparts, showing the protective effectiveness of the thermal shrinkage involved. The thermal stability of stabilized rayon fabrics is also affected by all the processing conditions used: stabilization temperature, phosphoric acid treatment, atmosphere gas, and heating rate. In addition, the surface and diameter of the stabilized fiber significantly depend on the treatment of phosphoric acid prior to stabilization process.

  • PDF

The Effect of Oxide Formation on the Lifetime of Plasma Sprayed or EB-PVD Thermal Barrier Coatings (플라즈마 용사 및 EB-PVD에 의한 열벽코팅 수명에 대한 산화물 생성의 영향)

  • ;R.D.Sisson;Jr
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.2
    • /
    • pp.91-98
    • /
    • 1994
  • For the plasma sprayed as well as the EB-PVD thermal barrier coatings, the fracture paths within the oxidation products developed at the interface between the partially stabilized zirconia ceramic coating and NiCoCrAlY bond coat during cyclic thermal oxidation has been investigated. It was observed that the fracture in the oxidation products primarily took place within the oxide such as $Ni_{1-x}Co_3(Al_,Cr)_2O_4$ or at the interface between the oxide and $Al_2O_3$. It was found that Al2O3 developed first, followed by the Ni/Co/Cr rich oxides such as ,,$Ni_{1-x}Co_x(Al_,Cr)_2O_4$ $Cr_2O_3$and NiO at the interface between the ceramic coating and the bond coat in a cyclic high temperature environment. It was therfore concluded that the formation of the oxide containing Ni, Cr and Co was a life-limiting event for thermal barrier coatings during cyclic thermal oxidation.

  • PDF

An investigation into the effects of lime-stabilization on soil-geosynthetic interface behavior

  • Khadije Mahmoodi;Nazanin Mahbubi Motlagh;Ahmad-Reza Mahboubi Ardakani
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.231-247
    • /
    • 2024
  • The use of lime stabilization and geosynthetic reinforcement is a common approach to improve the performance of fine-grained soils in geotechnical applications. However, the impact of this combination on the soil-geosynthetic interaction remains unclear. This study addresses this gap by evaluating the interface efficiency and soil-geosynthetic interaction parameters of lime-stabilized clay (2%, 4%, 6%, and 8% lime content) reinforced with geotextile or geogrid using direct shear tests at various curing times (1, 7, 14, and 28 days). Additionally, machine learning algorithms (Support Vector Machine and Artificial Neural Network) were employed to predict soil shear strength. Findings revealed that lime stabilization significantly increased soil shear strength and interaction parameters, particularly at the optimal lime content (4%). Notably, stabilization improved the performance of soil-geogrid interfaces but had an adverse effect on soil-geotextile interfaces. Furthermore, machine learning algorithms effectively predicted soil shear strength, with sensitivity analysis highlighting lime percentage and geosynthetic type as the most significant influencing factors.

Limit-current type zirconia oxygen sensor with porous diffusion layer (다공성 확산층을 이용한 한계전류형 지르코니아 산소센서)

  • Oh, Young-Jei;Lee, Chil-Hyoung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.329-337
    • /
    • 2008
  • Simple, small and portable oxygen sensors were fabricated by tape casting technique. Yttria stabilized zirconia containing cordierite ceramics (YSZC) were used as a porous diffused layer of oxygen in pumping cell. Yttria stabilized zirconia (YSZ) solid electrolyte, YSZC porous diffusion layer and heater-patterned ceramic sheets were prepared by co- firing method. Limit current characteristics and the linear relationship of current to oxygen concentration were observed. Viscosity variation of the slurries both YSZ and YSZC showed a similar behavior, but micro pores in the fired sheet were increased with increasing of the cordierite amount. Molecular diffusion was dominated due to the formation of large pores in porous diffusion layer. The plateau range of limit current in porous-type oxygen sensor was narrow than the one of aperture-type oxygen sensor. However limit current curve was appeared in porous-type oxygen sensor even at the lower applied voltage. The plateau range of limit-current was widen as increasing the thickness of porous diffusion layer of the YSZ containing cordierite. Measuring temperature of $600{\sim}650^{\circ}C$ was recommended for limit-current oxygen sensor. Porous diffusion layer-type oxygen sensor showed faster response than the aperture-type one and was stable up to 30 days running without any crack at interface between the layers.

A Study on the Metal to Zirconia Joining by Applying Direct Current (직류전원부하에 의한 지르코니아와 금속의 접합)

  • Kim Sung Jin;Kim Moon Hyop;Park Sung Bum;Gwon Won Il
    • 한국전기화학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.383-390
    • /
    • 2005
  • Effect of applying a DC voltage on the interfacial reaction at the metal to zirconia interface was investigated utilizing an oxygen ionic conductivity of partially stabilized zirconia. The joining of copper rod and zirconia tube was carried out in Ar gas atmosphere at $1000^{\circ}C$. There are two type of the joining. The one is the reaction bond consisting of copper and zirconia was dominated by surface reaction with a undetectable very thin layer. It was found that copper elements were diffused to zirconia side, but that Zr ions were not diffused to copper side. These results mean application of a DC voltage to migrate oxygen to the copper-zirconia interface can oxidize metal at the copper-zirconia interface and the bonding reaction between zirconia and copper oxide may occur. The other is the reaction bonding was dominated by interdiffusion with a very thick interface layer. This result mean application of a DC voltage can reduce zirconia at the interface. The bonding reaction is to be an alloying between Zr and Cu.

  • PDF

Basis Mode of Turbulent Flame in a Swirl-Stabilized Gas Turbine using LES and POD

  • Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.29-35
    • /
    • 2001
  • Unsteady numerical study has been conducted on combustion dynamics of a lean-premixed swirl-stabilized gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) parallel architecture, large eddy simulation(LES), and proper orthogonal decomposition (POD) technique was applied. The unsteady turbulent flame dynamics are simulated so that the turbulent flame structure can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots. Those flame dynamics coincides with experimental data. In addition, basis modes of the unsteady turbulent flame are characterized using proper orthogonal decomposition (POD) analysis. The flame structure based on odd basis modes is apparently larger than that of even ones. The flame structure can be extracted from the summation of the basis modes and eigenvectors at any moment.

  • PDF

Joining of Lanthanum Chromite and Yttria Stabilized Zirconia in Sealing of Planar Solid Oxide Fuel Cell

  • Lee, You-Kee;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.741-749
    • /
    • 1994
  • The planar solid oxide fuel cell(SOFC) contains several ceramic materials depending on its structure and has rdfractory metal parts for manifolds, shrouds and current leads. Among ceramic materials for planar SOFC, joining of lanthanum chromite separator and yttria stabilized zirconia(YSZ) electoyte in planar SOFC stack to give strong gas tight seals is necessary for satisfactory operation and high performance. Nevertheless, for planar SOFC/sub s/, how to seal the cell stack and gas manifold remains as one of the unsolved problems. Therefore, in this study. we investigated the joining of sintered lanthanum chromite and YSZ pellets using unsintered lanthanum chromite green films as sealent. Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDX) revealed that Ca in the sealing material diffused and dissolved into YSZ and sintered lanthanum chromite, and unsintered lanthanum chromite green films reacted with YSZ to from a new phase at the interface. Also, the densification of unsintered lanthanum chromite green films was inpeded by the Ca migration.

  • PDF

Control of a Mobile Robot Based on a Tangible Interface using iPhone (아이폰을 이용한 체감형 인터페이스 기반 이동 로봇 제어)

  • Jung, Hah-Min;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.335-340
    • /
    • 2011
  • In the study, a tangible interface using iPhone is proposed to control a mobile robot, instead of remote control by a joystick or buttons. The robot is controlled by iPhone like a handle bar, since acceleration sensors of iPhone are used in the proposed method. The sensors measure the angles changed on the xyz coordinates of iPhone. And their sensor values are stabilized by digital filters. Bluetooth is chosen for communication between a mobile robot and iPhone. In this paper, four type methods are considered and one of the methods is selected for remote control of a mobile robot. Experimental results show that the robot is easily and conveniently controled by the tangible interface based on iPhone.

Stabilizing Li2O-based Cathode/Electrolyte Interfaces through Succinonitrile Addition

  • Myeong Jun Joo;Yong Joon Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.231-242
    • /
    • 2023
  • Li2O-based cathodes utilizing oxide-peroxide conversion are innovative next-generation cathodes that have the potential to surpass the capacity of current commercial cathodes. However, these cathodes are exposed to severe cathode-electrolyte side reactions owing to the formation of highly reactive superoxides (Ox-, 1 ≤ x < 2) from O2- ions in the Li2O structure during charging. Succinonitrile (SN) has been used as a stabilizer at the cathode/electrolyte interface to mitigate cathode-electrolyte side reactions. SN forms a protective layer through decomposition during cycling, potentially reducing unwanted side reactions at the interface. In this study, a composite of Li2O and Ni-embedded reduced graphene oxide (LNGO) was used as the Li2O-based cathode. The addition of SN effectively thinned the interfacial layer formed during cycling. The presence of a N-derived layer resulting from the decomposition of SN was observed after cycling, potentially suppressing the formation of undesirable reaction products and the growth of the interfacial layer. The cell with the SN additive exhibited an enhanced electrochemical performance, including increased usable capacity and improved cyclic performance. The results confirm that incorporating the SN additive effectively stabilizes the cathode-electrolyte interface in Li2O-based cathodes.