• Title/Summary/Keyword: Stabilization materials

Search Result 403, Processing Time 0.023 seconds

Developing Continuous Stabilization Process for Textile-Grade PAN Fiber-Based Carbon Fiber Using UV Irradiation (저가형 탄소섬유 개발을 위한 자외선 조사 기반 의류용 PAN 섬유의 연속식 안정화 공정 개발)

  • Moon, Joon Ha;Seong, Honggyu;Yoo, Jiseon;Cho, Se Youn;Choi, Jaewon
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.418-423
    • /
    • 2022
  • Carbon fibers (CFs) are considered promising composite materials for various applications. However, the high cost of CFs (as much as $26 per kg) limits their practical use in the automobile and energy industries. In this study, we developed a continuous stabilization process for manufacturing low-cost CFs. We employed a textile-grade polyacrylonitrile (PAN) fiber as a low-cost precursor and UV irradiation technique to shorten the thermal stabilization time. We confirmed that UV irradiation on the textile-grade PAN fibers could lower the initial thermal stabilization temperature and also lead to a higher reaction. These resulted in a shorter overall stabilization time and enhancement of the tensile properties of textile-grade PAN-based CFs. Our study found that only 70 min of stabilization time with UV irradiation was required to prepare textile-grade PAN-based low-cost CFs with a tensile strength of 2.37 ± 0.22 GPa and tensile modulus of 249 ± 5 GPa.

Physical Characteristics of Soft Clay Improved by PFA Stabilization Agent (제지회계 지반개량재로 처리된 연약점토의 물리적 특성)

  • 김광빈;이용안;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.561-568
    • /
    • 2002
  • PFA(Paper Fly Ash) are reclaimed mainly or used in cement industry field as mixture agent in terms of materials recycling. Recently, research for recycling PFA as embankment materials or soil stabilization agent are undergoing in geotechnical engineering field. In this study, physical characteristics of PFA stabilization agent-soil admixtures are examined in change of water content, void ratio, consistency, grain distribution, specific gravity and density. Futhermore, the physical characteristics are compared with unconfined strength as engineering characteristics. Test results showed that unconfined strength and density are increased with increasing of PFA stabilization agent mixed ratio. On the other hand, specific gravity, void ratio and water content are decreased with increasing of PFA stabilization agent mixed ratio. It would be concluded that natural high water content ratio weak soil could be highly improved engineering and physical characteristics with PFA stabilization agent

  • PDF

A Pressure Stabilization Technique for Incompressible Materials (비압축성 물체의 수치해 안정화 기법)

  • Lee, Sang-Ho;Kim, Sang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.153-160
    • /
    • 1995
  • Mixed finite element formulations for incompressible materials show pressure oscillations or pressure modes in four-node quadrilateral elements. The criterion for the stability in the pressure solution is the so-called Babufka-Brezzi stability condition, and the four-node elements based on mixed variational principles do not appear to satisfy this condition. In this study, a pressure continuity residual based on the pressure discontinuity at element edges is used to study the stabilization of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral elements. It is shown that the pressure solutions, although stable, exhibit sensitivity to the stabilization parameters.

  • PDF

Yield enhancement of matrix precursor in short carbon fiber reinforced randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Sharma, Sharad Chandra;Verma, Anil
    • Carbon letters
    • /
    • v.19
    • /
    • pp.57-65
    • /
    • 2016
  • Isroaniso matrix precursor synthesized from commercially available petroleum pitch was stabilized in air. The influence of oxygen mass gain during stabilization on the yield of matrix precursor was studied. Additionally, the influence of pressure on the yield of the stabilized matrix precursor in a real system was studied. The fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TGA), yield, yield rate, and yield impact were used to check the effect of stabilization and pressure on the yield of the matrix precursor and the end properties of the composite thereafter. The results showed that the yield increased with stabilization duration up to 20 h whereas it decreased for stabilization duration beyond 20 h. Further results showed that the stabilized matrix precursor for a duration of 5 h could withstand almost two-fold greater hot-pressing pressure without resulting in exudation as compared to that of a 1 h stabilized matrix precursor. The enhanced hot-pressing pressure significantly improved the yield of the matrix precursor. As a consequence, the densification and mechanical properties were increased significantly. Further, the matrix precursor stabilized for a duration of 20 h or more failed to provide proper and uniform binding of the reinforcement.

Heavy Metal Stabilization in Soils using Waste Resources - A Critical Review (폐자원을 이용한 중금속 오염토양의 안정화 - 총설)

  • Lim, Jung Eun;Moon, Deok Hyun;Kim, Kwon-Rae;Yang, Jae E;Lee, Sang Soo;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.157-174
    • /
    • 2015
  • Stabilization of metals in contaminated soils using various waste materials has been reported. Alkaline materials (limes, shells, industrial byproducts, etc.), phosphorous (P) containing materials (animal bones, phosphate rock, etc.), organic materials (composts, manures, biochars, etc.) and others (zerovalent iron, zeolite, etc.) were widely evaluated to ensure its effectiveness/applicability of stabilization of metals in soils. Stabilization mechanisms of those materials above were partially revealed, but the related literatures are still lacked and not sufficient for approaching to long-term stability/applicability in the field. The aims of this review are to summarize current knowledge of metal stabilization in contaminated soils using various waste materials and to suggest a direction for future field research.

The Assessment for Environmental Stabilization of Ground Solidification Materials using Industrial y-product (산업부산물을 활용한 지반고화재의 환경안정성 평가)

  • Lee, Yeong Won;Mun, Gyeong Ju
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.116-117
    • /
    • 2014
  • This study is to environmental safety assessment of ground solidification materials using industrial by-products. also, physical and chemical properties were investigated. as a result, compared to conventional cement the survival rates are capable, was judged to be possible utilizing of ECO-friendly ground solidification materials.

  • PDF

Stabilization of pressure solutions in four-node quadrilateral elements

  • Lee, Sang-Ho;Kim, Sang-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.711-725
    • /
    • 1998
  • Mixed finite element formulations for incompressible materials show pressure oscillations or pressure modes in four-node quadrilateral elements. The criterion for the stability in the pressure solution is the so-called Babu$\check{s}$ka-Brezzi stability condition, and the four-node elements based on mixed variational principles do not appear to satisfy this condition. In this study, a pressure continuity residual based on the pressure discontinuity at element edges proposed by Hughes and Franca is used to study the stabilization of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral elements. Also, a solid mechanics problem is presented by which the stability of mixed elements can be studied. It is shown that the pressure solutions, although stable, are shown to exhibit sensitivity to the stabilization parameters.

Corrosion Products and Desalting Treatments of Copper and Copper Alloy (Bronze) (동(Cu) 및 동합금(Bronze)의 부식생성물과 탈염처리)

  • Kim, Sang-Beoum;Kim, Hyun-Cheol;Park, Hyung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.82-89
    • /
    • 2010
  • Benzotriazole (B.T.A) which has been mainly used for the stabilization processing method of excavated copper and bronze artifacts is vaporized within 2~3 years after the usage because it is unstable at the acid conditions and cannot protect the surface of artifacts. In this study, NaOH method which has been used for the steel artifacts was applied as a stabilization process for the method of copper and bronze artifacts to gush chlorine ion out. For the reproduction of excavated samples, copper and bronze plates were dipped in 0.1M HCl for 26 hrs to form CuCl, rusted at $70^{\circ}C$ with RH 75% for the formation of corrosion products, and desalted in 0.1 M NaOH solution. The concentration of chlorine ion was measured by using ionchromatography. During the desalting process, a large quantity of chlorine ions was gushed out in early period and corrosion products were not additionally generated through the re-corrosion experiment. This NaOH desalting process was found to be a method of stabilization process for copper and bronze artifacts from the formation of Tenorite (CuO) during desalting as a protection layer for corrosion.

Effect of Electron Beam Currents on Stabilization of Polyacrlonitrile Precursor Fiber (PAN 전구체 섬유의 안정화시 전자선 전류의 영향)

  • Shin, Hye Kyoung;Jeun, Joon Pyo;Kim, Hyun bin;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • Polyacrylonitrile (PAN) fibers are the most widely used precursor of the materials for carbon fibers. The conventional process of carbon fibers from PAN precursor fiber includes two step; stabilization at low temperature and carbonization at high temperature. Compared to thermal stabilization, the stabilization process by electron beam (E-beam) irradiation is a advanced and brief method. However, a stabilization by E-beam irradiation was required a high dose (over 5,000 kGy) and spend over 1.5 hr (1.14 MeV, 1 mA). In the present work the main goal is exploring a quick stabilization process by cotrolling E-beam currents. The effect of various E-beam currents on stabilization of PAN precursor fiber was studied by gel fraction test, thermo gravimertic analysis (TGA), differential scanning calorimetry (DSC), tensile strength, and scanning electron microscopy (SEM) images.

The Development of High Oxygen Pressures and the Stabilization of Unusual Oxidation States of Transition Metals

  • Gerard DEMAZEAU
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.135-140
    • /
    • 1998
  • High oxygen pressures appear an important tool in Solid State Chemistry. Two main routes can be developed: (i) the stabilization of thermally unstable oxides, used as precursors, in order to open the synthesis of new materials, (ii) the stabilization of the highest oxidation states of transition metals. This paper is essentially devoted to this second research axis. The methodology developed for preparing new oxides containing Fe(Ⅴ), Ir(Ⅵ), high spin Fe(Ⅳ) and Cu(Ⅲ) is described.

  • PDF