• Title/Summary/Keyword: Stability ratio

Search Result 2,797, Processing Time 0.034 seconds

Control Bandwidth Extension Method Based on Phase Margin Compensation for Inverters with Low Carrier Ratio

  • Wei, Qikang;Liu, Bangyin;Duan, Shanxu
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1760-1770
    • /
    • 2018
  • This paper presents a control bandwidth extension method for inverters with a low carrier ratio. The bandwidth is extended at the price of decreasing the phase margin. Then the phase margin is compensated by introducing an extra leading angle into an inverse Park transformation. The model of the controller with the proposed method is established. The magnitude and phase characteristics are also analyzed. Then the influence on system stability when the leading angle is introduced is analyzed. The proposed method is applied to design an inverter controller with both a large bandwidth and a desired phase margin, and the experimental results verify that the controller performs well in the steady-state and in terms of transient response.

Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions

  • Akgoz, Bekir
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.133-142
    • /
    • 2019
  • In the present study, microstructure-dependent static stability analysis of inhomogeneous tapered micro-columns is performed. It is considered that the micro column is made of functionally graded materials and has a variable cross-section. The material and geometrical properties of micro column vary continuously throughout the axial direction. Euler-Bernoulli beam and modified couple stress theories are used to model the nonhomogeneous micro column with variable cross section. Rayleigh-Ritz solution method is implemented to obtain the critical buckling loads for various parameters. A detailed parametric study is performed to examine the influences of taper ratio, material gradation, length scale parameter, and boundary conditions. The validity of the present results is demonstrated by comparing them with some related results available in the literature. It can be emphasized that the size-dependency on the critical buckling loads is more prominent for bigger length scale parameter-to-thickness ratio and changes in the material gradation and taper ratio affect significantly the values of critical buckling loads.

The Mixing Effect of Methanol and Ethanol in Lard and Soybean Oil Based Biodiesel Production (돈지와 대두유를 이용한 바이오디젤 제조에서 메탄올과 에탄올의 혼합효과)

  • Lee, Seung Bum;Kim, Hyungjin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.515-519
    • /
    • 2014
  • The fuel properties of biodiesel produced by changing the mixing ratio of methanol and ethanol in trans-esterification of soybean oil and lard were evaluated in this paper. The solubility of oil and fat in ethanol was higher than that in methanol. Also the more homogeneous biodiesel was produced as increasing the mole ratio of ethanol. The conversion characteristics of lard was the best at the mixing mole ratio of methanol and ethanol was 6 : 6 at the reaction temperature of $60^{\circ}C$. On the other hands, the best biodiesel conversion characteristics for soybean oil was obtained at the mixing mole ratio of 3 : 3. The kinematic viscosities of soybean oil and lard based biodiesel were 4.17~4.35 cSt and 4.69~4.93 cSt, respectively. The oxidation stability and higher heating value increased with increasing the mole ratio of ethanol. The oxidation stability satisfied the criteria of biodiesel quality of 6 hours. And finally, the higher heating value was approximately 40 MJ/kg.

Experimental study on transmission and stability of submerged breakwater (잠제의 전달율과 안정성에 관한 실험적 연구)

  • Kim, Yong-Woo;Yoon, Han-Sam;Kim, Hong-Jin;Ryu, Cheong-Ro;Sohn, Byung-Kyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.213-219
    • /
    • 2003
  • As the 2-D hydraulic experimental results for the submerged rubble-mound structure, we have concerned with their stability/function characteristics of structures by the effects of wave force, scour/deposition at the toe and wave transmission ratio at the lee-side sea. And as to investigate the variation characteristics of wave transmission ratio which depended to a geometrical structure of the submerged breakwater profiles, the critical conditions for the depth of submergence and crest width obviously presented. In summary, there results lead us to the conclusions that the wave control capabilities of submerged breakwaters by the variation of the submergence depth is high about 4 time degrees at the efficiency than the that of crest width. The destruction of covering block at the crest generated at the region which located between maximum damage curve, it maximum damage/failure station from the toe of the structure were 0.2L. As the wave transmission coefficient and the slope of the structure increase, the damage/failure ratio and the maximum scour depth at the toe was extended, respectively. When maximum scour depth happened. The destruction of covering block which located at the toe generated at the front slope destruction. Finally, it was found from the results that the optimization of structure may be obtained by the efficiently decision of the submergence depth and crest width in the permissible range of wave transmission ratio.

  • PDF

Stability Analysis of the Inclined Pillars by Scaled Model Test (축소모형실험을 통한 편간 불일치 필라의 안정성 연구)

  • Kim, Jong-Gwan;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.508-515
    • /
    • 2016
  • In this study, we compared the stability of the pillars by using room and pillar mining method with the four models with different stiffness and pillar overlap ratio. The experimental models consist of two plaster models (overlap ratio 0%, 100%) and two cement models(overlap ratio 0%, 100%). The soft and hard rocks are modeled by plaster and cement models respectively. In these experiments, the model materials with strength values reflecting the calculated scaled factors not been used, so it is not a true scaled model test that reproduces in situ state in the laboratory. Experimental results show that the different overlap ratio pillars are one of the factors that can affect the stability of the mine.

Production of Water/n-decane Emulsion Fuel and Evaluation of Rheological Stability (물/n-데칸 에멀젼 연료의 제조 및 유변학적 안정성 평가)

  • Kim, Hye Min
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.8-14
    • /
    • 2017
  • In this study, the production of proper emulsion fuel and the evaluation of its rheological stability in various experimental conditions were carried out. The W/O (water-in-oil) emulsion fuel was made using n-decane, pure water, and Span 80 was used as a surfactant. Increments of water volume ratio and fuel temperature were the factors, which boosted the phase separation of the emulsion fuel. Rheological characteristics for different water/oil volume ratio, temperature, and elapsed time after the fuel production were examined. As the water volume ratio in the fuel increased, the behavior of non-Newtonian fluid was observed. Viscosity declined as the fuel temperature increased due to the cohesion of water droplets in the fuel. The effect of elapsed time on viscosity was not severe for lower water ratio. However, gradual decrease of viscosity 3 hours after fuel production, in the case of ratio of 3:7, was clearly observed.

DEVELOPMENT OF AN ACTIVE FRONT STEERING SYSTEM

  • Kim, S.J.;Kwak, B.H.;Chung, S.J.;Kim, J.G.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.315-320
    • /
    • 2006
  • We have developed an active front steering system(AFS) with a planetary gear train, which can vary the steering gear ratio according to the vehicle speed and improve vehicle stability by superimposing steering angle. We conducted vehicle tests showing that co-operated control of AFS with ESP can improve vehicle stability by direct control of tire slip angle and that steering reaction torque during AFS intervention can be compensated by torque compensation using electric power steering.

Dynamic Stability of Cylindrical Shells Subjected to Follower Forces (종동력을 받는 원통형 쉘의 동적 안정성에 관한 연구)

  • 김현순;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.396-401
    • /
    • 1997
  • Dynamic stability of cylindrical shells subjected to follower forces is analyzed in this paper. Motion of shells is formulated in curvilinear coordinates that is consistent with assumptions made in the Timoshenko beam and the Mindlin plate. Using the finite element method, the induced equations are reduced to an equation with finite degrees of freedom. The 9-node Lagrangian element is used, and reduced integration is used to avoid shear and membrane locking. The effects of thickness ratio on the dynamic stability of cylindrical shells are studied.

  • PDF

Combustion Characteristic of Anode Off Gas for Fuel Cell Reformer (개질기용 Anode Off Gas의 연소특성에 관한 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.5-10
    • /
    • 2012
  • The reformer system is a chemical device that drives the conversion of hydrocarbon to hydrogen rich gas under high temperature environment($600-1,000^{\circ}C$). Generally, NG(Natural Gas) or AOG(Anode Off Gas) is used as fuel of fuel cell reformer combustion system. The experimental study to analyze the combustion characteristics of a premixed ceramic burner used for 0.5-1.0 kW fuel cell reformer was performed. Ceramic burner experiments using NG and AOG were carried out to investigate the flame stability characteristics by heating capacity, equivalence ratio and different fuels respectively. The results show that surface flames can be classified into green, red, blue and lift-off flames as the equivalence ratio of methane-air mixture decreases. And the stable flames can be established using NG and AOG as reformer fuel in the perforated ceramic burner. In particular, the blue flame is found to be stable at a lean equivalence ratio under different mixture conditions of NG and AOG for the 0.5 to 1.0 kW fuel cell system power range. NOx emission is under 60 ppm between 0.70 to 0.78 of equivalence ratio and CO emission is under 50 ppm between 0.70 to 0.84 of equivalence ratio.

Exhaust and Combustion Characteristics of Premixed Swirl Burner for Steam Reforming System (선회류 예혼합버너를 적용한 개질기용 연소시스템의 배기 및 연소특성)

  • Cha, Chun Loon;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.34-43
    • /
    • 2014
  • The reformer system is a method for hydrogen production from hydrocarbon fuels such as natural gas under high temperature environment($about{\sim}1,000^{\circ}C$). The premixed swirl burner with mixing swirler and combustion swirler designed to deliver fuel cell electric output from 0.5 kW to 1.5 kW. Premixed swirl burner experiments using natural gas and mixture of natural gas and anode off gas were carried out to analyse flame patterns and stability by equivalence ratio respectively. The results show that the stable swirl flame can be established for all cases of fuels type using the premixed swirl burner. The swirl flame had a wide stability region and it showed very low CO(50 ppm) and $NO_x$(20 ppm) emission at different fuel type and various equivalence ratio conditions. The operating range of premixed swirl burner for stable swirl flame is found to exist between equivalence ratio of 0.70 to 0.90 for turn down ratio of 3:1.