• Title/Summary/Keyword: Stability order

Search Result 5,272, Processing Time 0.031 seconds

Comparative Analyses for the Properties of Surface Soils from Various Land Uses in an Urban Watershed and Implication for Soil Conservation (도시 유역 내에서 토지이용에 따른 표토의 특성 비교 및 표토 보전을 위한 시사점)

  • Park, Eun-Jin;Kang, Kyu-Yi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.3
    • /
    • pp.106-115
    • /
    • 2009
  • Knowledge about how to stabilize soil structure is essential to conserve soil systems and maintain various biogeochemical processes through soil. In urban area, soil structural systems are degraded with inappropriate management and land use and become vulnerable to erosion. We analyzed the structural changes of surface soils with different land uses, i.e., forests, parks, roadside green area, riparian area, and farmlands (soybean fields), in the Anyang Stream Watershed in order to find the factors influencing the stability of soil structure and the implication for better management of surface soil. Soil organic matter contents of other land use soils were only 18~52% of that in forest soils. Soil organic matter increased the stability of soil aggregates in the order of soybean fields < roadsides < riparian < parks < forests and also reduced soil bulk density (increased porosity). The lowest stability of soybean field soils was attributed to the often disturbance like tillage and it was considered that higher stability of park soils comparing to other land use soils except forests was owing to the covering of soil surface with grass. These results suggest that supply of soil organic matter and protection of soil surface with covering materials are very important to increase porosity and stability of soil structure.

A numerical study on nonlinear stability of higher-order sandwich beams with cellular core and nanocomposite face sheets

  • Ding, Ke;Jia, Hu;Xu, Jun;Liu, Yi;Al-Tamimi, Haneen M.;Khadimallah, Mohamed Amine
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.465-473
    • /
    • 2022
  • In this research, a numerical study has been provided for examining the nonlinear stability behaviors of sandwich beams having a cellular core and two face sheets made of nanocomposites. The nonlinear stability behaviors of the sandwich beam having geometrically perfect/imperfect shapes have been studied when it is subjected to a compressive buckling load. The nanocomposite face sheets are made of epoxy reinforced by graphene oxide powders (GOPs). Also, the core has the shape of a honeycomb with regular configuration. Using finite element method based on a higher-order deformation beam element, the system of equations of motions have been solved to derive the stability curves. Several parameters such as face sheet thickness, core wall thickness, graphene oxide amount and boundary conditions have remarkable influences on stability curves of geometrically perfect/imperfect sandwich beams.

A Study on the Stability of Carbamide Peroxide Solution (Carbamide Peroxide 용액(溶液)의 안정성(安定性))

  • Rhee, Gye-Ju;Yu, Byung-Sul
    • YAKHAK HOEJI
    • /
    • v.28 no.6
    • /
    • pp.299-303
    • /
    • 1984
  • In order to eluciate the effect of humidity and organic solvent on the decomposition of carbamide peroxide, the kinetic study was carried out. The carbamide peroxide was prepared from urea and 30%-hydrogen peroxide. The accelerated stability analysis for carbamide peroxide crystal in various relative humidity, and for 10%-carbamide peroxide solution of organic solvents were investigated. Both humidity and temperature were important factors influencing the decomposition rate of carbamide peroxide crystal. The higher the humidity and temperature, the greater was the reaction rate. The breakdown rate of crystal was observed as an apparent zero-order, and was faster than the rate of decomposition in dilute propylene glycol, glycerine or sorbitol solutioos which were measured as an apparent first-order reaction. The more dilute to 10% the organic solvents of 10%-carbamide peroxide, the slower was breakdown rate. It is, therefore, useful in the aspects of stability and economics to substitute solvent of carbamide peroxide topical solution (USP XXI) with 10%-propylene glycol or glycerine instead of anhydrous glycerine.

  • PDF

Analysis for the Stability of a Haptic System with the Computational Time-varying Delay (가변적인 계산시간지연에 의한 햅틱 시스템에서의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.37-42
    • /
    • 2015
  • This paper presents the effects of the computational time-varying delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a computational time-varying delay model. In this paper, the maximum of the computational time-varying delay is assumed to be as much as the sampling time. Using the simulation, it is analyzed how the sample-hold methods and the computational time-varying delay affect the maximum available stiffness. As the maximum of computational time-varying delay increases, the maximal available stiffness of a virtual wall model is reduced.

Super convergent laminated composite beam element for lateral stability analysis

  • Kim, Nam-Il;Choi, Dong-Ho
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.175-202
    • /
    • 2013
  • The super convergent laminated composite beam element is newly derived for the lateral stability analysis. For this, a theoretical model of the laminated composite beams is developed based on the first-order shear deformation beam theory. The present laminated beam takes into account the transverse shear and the restrained warping induced shear deformation. The second-order coupling torque resulting from the geometric nonlinearity is rigorously derived. From the principle of minimum total potential energy, the stability equations and force-displacement relationships are derived and the explicit expressions for the displacement parameters are presented by applying the power series expansions of displacement components to simultaneous ordinary differential equations. Finally, the member stiffness matrix is determined using the force-displacement relationships. In order to show accuracy and superiority of the beam element developed by this study, the critical lateral buckling moments for bisymmetric and monosymmetric I-beams are presented and compared with other results available in the literature, the isoparametric beam elements, and shell elements from ABAQUS.

An Improved Stability Design of Steel Cable-Stayed Bridges using Second-Order Effect (2차효과를 고려한 강사장교의 개선된 좌굴해석)

  • Kyung Yong-Soo;Kim Nam-Il;Lee Jun-Sok;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.993-1000
    • /
    • 2006
  • Practical stability design method of main members of cable-stayed bridges is proposed and discussed through a design example. For this purpose, initial tensions of stay cables and axial forces of main members are firstly determined using initial shaping analysis of bridges under dead loads. And then the effective buckling length using system elastic/inelastic buckling analysis and bending moments considering $P-{\delta}-{\Delta}$ effect by second-order elastic analysis are calculated for main girder and pylon members subjected to both axial forces and moments, respectively. Particularly, load combinations of dead and live loads, in which maximum load effects due to live loads are obtained, are taken into account and effects of live loads on effective buckling lengths are investigated.

  • PDF

Robust Near Time-optimal Controller Design for a Driving System Using Lyapunov Stability (Lyapunov 안정성을 이용한 구동장치의 강인 최단시간 제어기 설계)

  • Lee, Seong-Woo;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.650-658
    • /
    • 2012
  • This paper proposes a high performance position controller for a driving system using a time optimal controller which has been widely used to control driving systems to achieve desired reference position or velocity in a minimum response time. The main purpose of this research lies in an improvement of transient response performance rather than that of steady-state response in comparison with other control strategies. In order to refine the scheme of time optimal control, Lyapunov stability proofs are incorporated in a controller of standard second order system model. This scheme is applied to the control of a driving system. In view of the simulation and experiment results, the standard second order system model exhibits better minimum-time control performance and robustness than double integral system model does.

Optimal Design of Shock Absorber using High Speed Stability (고속 안정성을 고려한 쇽업소버 최적 설계)

  • 이광기;모종운;양욱진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 1998
  • In order to solve the conflict problem between the ride comfort and the road holding, the optimal design of shock absorber that minimizes the r.m.s. of sprung mass vertical acceleration and pitch rate with the understeer characteristics constraints in the high speed stability is proposed. The design of experiments and the nonlinear optimization algorithm are used together to obtain the optimal design of shock absorber. The second order regression models of the input variables(front and rear damping coefficients) and the output variables (ride comfort index and road holding one) are obtained by the central composite design in the design of experiments. Then the optimal design of shock absorber can be systematically adjusted with applying the nonlinear optimization algorithm to the obtained second order regression model. The frequency response analysis of sprung mass acceleration and pitch rate shows the effectiveness of the proposed optimal design of shock absorber in the sprung mass resonance range with the understeer characteristics constraints.

  • PDF

Initial Growth and Surface Stability of 1,4,5,8,9,11-Hexaazatriphenylene-exanitrile (HATCN) Thin Film on an Organic Layer

  • Kim, Hyo Jung;Lee, Jeong-Hwan;Kim, Jang-Joo;Lee, Hyun Hwi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.192.2-192.2
    • /
    • 2013
  • Crystalline order and surface stability of 1,4,5,8,9,11-hexaazatriphenylene-hexanitrile (HATCN) thin films on organic surface were investigated using grazing incidence wide angle x-ray scattering and x-ray reflectivity measurements. In the initial growth regime (less than 20 nm), HATCN molecules were stacked to low crystalline order with substantial amorphous phase. Meanwhile, a thicker film with 50 nm thickness showed high crystalline order of hexagonal phase with three different orientational domains. The domain distribution was quantitatively obtained as a function of tilted angle. By an organic-inorganic interface formation of IZO/HATCN thin film from an indium zinc oxide (IZO) electrode deposition, the surface stability of HATCN film was investigated and the sharp interface was confirmed by the x-ray reflectivity measurement.

  • PDF

AN EFFICIENT SECOND-ORDER NON-ITERATIVE FINITE DIFFERENCE SCHEME FOR HYPERBOLIC TELEGRAPH EQUATIONS

  • Jun, Young-Bae;Hwang, Hong-Taek
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.289-298
    • /
    • 2010
  • In this paper, we propose a second-order prediction/correction (SPC) domain decomposition method for solving one dimensional linear hyperbolic partial differential equation $u_{tt}+a(x,t)u_t+b(x,t)u=c(x,t)u_{xx}+{\int}(x,t)$. The method can be applied to variable coefficients problems and singular problems. Unconditional stability and error analysis of the method have been carried out. Numerical results support stability and efficiency of the method.