• Title/Summary/Keyword: Stability margin

Search Result 395, Processing Time 0.026 seconds

A Study on the Voltage Stability Control Scheme using Real-time Monitoring Data (실시간 감시 정보를 이용한 전압안정도 제어 방안에 대한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.206-212
    • /
    • 2017
  • In this paper, using the power system information obtained from real-time monitoring device, to analyze the voltage stability margin index and described the voltage stability control scheme for voltage stability enhancement. Based on the utilization of the voltage stability monitoring index based on local information provided by the PMU(Phasor Measurement Unit), the purpose of the plan is to control the system stably in real time. In order to apply the load control scheme, the voltage stability margin is calculated using the data acquired through the PMU installed in each load bus. If the voltage drops below a certain level, load control is performed for each. The effectiveness of the voltage stability control measures is applied to the actual KEPCO system to analyze the effectiveness.

Generation Rescheduling Priority using Transient Energy Margin Sensitivity (과도에너지 마진의 감도를 이용한 발전력 재배분의 Priority)

  • Kim, Kyu-Ho;Kim, Soo-Nam;Rhee, Sang-Bong;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1086-1090
    • /
    • 2011
  • This paper presents a method to evaluate generation rescheduling priority using transient energy margin sensitivity for power system operation. A change in any of the functional parameters obviously causes a change in the energy margin. Especially the energy margin sensitivity is evaluated for change with respect to generation. For a given contingency, the energy margin is computed and the respective sensitivities are also computed. It is possible to rank the sensitivities and thereby determine the generators which will affect the energy margin most and hence affect the stability (instability) of the system. The sign of the sensitivity indicates the direction of change in generation for a given change in energy margin.

An Interior Point Method based Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints

  • Song Hwa-Chang;Lee Byong-Jun;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.152-158
    • /
    • 2005
  • This paper describes a reactive optimal power flow incorporating margin enhancement constraints. Margin sensitivity at a steady-state voltage instability point is calculated using invariant space parametric sensitivity, and it can provide valuable information for selection of effective control parameters. However, the weakest buses in neighboring regions have high margin sensitivities within a certain range. Hence, the control determination using only the sensitivity information might cause violation of operational limits of the base operating point, at which the control is applied to enhance voltage stability margin in the direction of parameter increase. This paper applies an interior point method (IPM) to solve the optimal power flow formulation with the margin enhancement constraints, and shunt capacitances are mainly considered as control variables. In addition, nonlinearity of margin enhancement with respect to control of shunt capacitance is considered for speed-up control determination in the numerical example using the IEEE 118-bus test system.

The Optimal VAR Planning Considering Voltage Stability Margin (전압안정도여유를 고려한 무효전력원 배분계획)

  • Song, Kil-Yeong;Choi, Sang-Kyu;NamKung, Jae-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.33-35
    • /
    • 1993
  • This paper presents a new optimal VAR planning algorithm considering voltage stability margin. The characteristic of this method is to make it possible to formulate VAR planning for the dual purpose of maintaining voltage profiles within specified limits, and increasing the voltage stability margin of anticipated operating conditions with respect to voltage collapse. The IEEE-30 bus system is used to demonstrate the capability of the proposed algorithm.

  • PDF

A Low Vth SRAM Reducing Mismatch of Cell-Stability with an Elevated Cell Biasing Scheme

  • Yamauchi, Hiroyuki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.118-129
    • /
    • 2010
  • A lower-threshold-voltage (LVth) SRAM cell with an elevated cell biasing scheme, which enables to reduce the random threshold-voltage (Vth) variation and to alleviate the stability-degradation caused by word-line (WL) and cell power line (VDDM) disturbed accesses in row and column directions, has been proposed. The random Vth variation (${\sigma}Vth$) is suppressed by the proposed LVth cell. As a result, the LVth cell reduces the variation of static noise margin (SNM) for the data retention, which enables to maintain a higher SNM over a larger memory size, compared with a conventionally being used higher Vth (HVth) cell. An elevated cell biasing scheme cancels the substantial trade-off relationship between SNM and the write margin (WRTM) in an SRAM cell. Obtained simulation results with a 45-nm CMOS technology model demonstrate that the proposed techniques allow sufficient stability margins to be maintained up to $6{\sigma}$ level with a 0.5-V data retention voltage and a 0.7-V logic bias voltage.

A Study on Assesment Algorithm for the Economical Generation Capability considering Voltage Stability (전압안정도를 고려한 경제적인 발전가능전력의 산정알고리즘에 관한 연구)

  • Moon, Hyun-Ho;Lee, Jong-Joo;Yoon, Chang-Dae;Ahn, Pius;Choi, Sang-Yule;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.536-543
    • /
    • 2006
  • This paper uses Monte Carlo technique, which is one of probabilistic methods of estimating the economical quantity of electric power generation in consideration of voltage stability in the aspect of power generation companies. In the power exchange system in Korea, when power generation companies participate in tenders for power generation capacity at the power exchange, they need to determine their power supply capacity considering the stability of electric power system. Thus, we purposed to propose an algorithm for estimating economical power generation capacity in theaspect of power generation companies, through which we can estimate the margin for voltage stability through P-V curve analysis by capacity according to the change of power generation capacity in a simulated system and to conduct Monte Carlo simulation in consideration of the margin

An Experimental Assesment of Combustion Stability of Coaxial Swirl Injector and Impinging Injector through Simulating Combustion Test (상압기상연소시험을 통한 동축형 스월 분사기와 충돌형 분사기의 연소안정성 평가)

  • Park, Junhyeong;Kim, Hongjip
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.153-156
    • /
    • 2014
  • This study was aimed to assess combustion stability for coaxial swirl injector and FOOF impinging injector which would be candidates in liquid rocket engine combustors. Simulating combustion tests under atmospheric condition have been conducted by gaseous oxygen and the mixture of methane and propane, using two actual injectors. By analyzing the measured dynamic pressure signals, we have evaluated the combustion stability margin of both injectors by drawing a stability map.

  • PDF

Coordinated Control of SVC and ULTC Considering Reactive Power Compensation Margin (무효전력 보상여유를 고려한 SVC와 ULTC의 협조제어)

  • Moon, Kyeong-Seob;Son, Kwang-Myoung;Lee, Tae-Gi;Lee, Song-Keun;Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.351-357
    • /
    • 1999
  • This paper proposes the coordinated control of SVC and UTLC at the distribution substation to get larger operating margin of SVC for the voltage stability control by reactive power compensation. In the conventional method, ULTC doesn't respond to the variation of source voltage, so SVC has the entire responsibility for it. It could cause the lack of operating margin of SVC in some condition. It, however, is important to secure an operating margin for the dynamic stability control in emergancy. This paper proposes the coordinated control method that SVC controls the supply voltage and ULTC respond to the SVC compensation valve based on the relation between SVC compensation and ULTC tap position. The numerical simulation verifies that the proposed system could increase the operating margin of SVC compared with the conventional system.

  • PDF

Design of Current Controller for an Induction Motor using Robust Stability Theory (강인안정도 기법을 이용한 유도전동기의 전류 제어기 설계)

  • 박태식;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.165-172
    • /
    • 2003
  • In this paper, the new robust current control scheme is proposed for an Induction motor. The proposed design scheme of current controller tan obtain a specified stability margin through electrical parameter variation by using Kharitonov robust stability theory. The characteristics of the proposed design scheme are compared with those of a conventional scheme by computer simulation and its effectiveness and usefulness is verified by experiments on the 0.75kW induction motor drive.

A Study on Decentralized under Voltage Load Shedding Scheme for Preventing Wide-area Black Out (광역정전 예방을 위한 분산형 부하 제어 방안에 대한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • An electric power system sometimes fails because of disturbances that occur unexpectedly, such as the uncontrolled loss of load that developed from cascading blackout. Which make stability through a little of under voltage load shedding should work. The development of phasor measurement unit(PMU) makes network supervision possible. The information obtained from PMU is synchronized by global positioning system(GPS). There are many real-time algorithms which are monitoring the voltage stability. This paper presents the study on the VILS(Voltage Instability Load Shedding) using PMU data. This algorithm computes Voltage Stability Margin Index(VSMI) continuously to track the voltage stability margin at local bus level. The VSMI is expressed as active and reactive power. The VSMI is used as an criterion for load shedding. In order to examine the algorithm is effective, applied to KEPCO system.