• Title/Summary/Keyword: Stability Limit

Search Result 1,064, Processing Time 0.025 seconds

Stability of the Robot Compliant Motion Control, Part 1 : Theory (로보트의 Compliance 제어에서의 안정성:이론)

  • Sung-Kwun Kim
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.941-949
    • /
    • 1989
  • This two-part paper presents a control method that allows for stable interaction of a robot manipulator with environment. In part 1, we focus on the input output relationships (unstructured modeling) of the robot and environment dynamics. This analysis leads to a general condition for stability of the robot and environment taken as a whole. This stability condition, for stable maneuver, prescribes a finite sensitivity for robot and environment where sensitivity of the robot (or the environment) is defined as a mapping forces into displacement. According to this stability condition, smaller sensitivity either in robot or in environment leads to narrower stability range. In the limit, when both systems have zero sensitivity, stability cannot be guaranteed. These models do not have any particular structure, yet they can model a wide variety of industrial and research robot manipulators and environment dynamic behavior. Although this approach of modeling may not lead to and design procedure, it will allow us to understand the fundamental issues in stability when a robot interacts with an environment.

The Effect of Damping of a Two-degree-of-freedom Model for the Disc Brake Squeal Noise (2자유도계 모델을 이용한 디스크 브레이크 스퀼 소음에 대한 댐핑의 영향에 관한 연구)

  • Shin, Ki-Hong;Joe, Yong-Goo;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.903-910
    • /
    • 2003
  • A two-degree-of-freedom model is suggested to describe basic dynamical behaviors of the interaction between the pad and the disc of a disc brake system. Although a pad (and a disc) has many modes of vibration in practice, only one mode of each component Is considered. In this paper, a linear analysis is performed by means of the stability analysis to show various conditions for the system to become unstable, and is based on the assumption that the existence of limit cycle (this corresponds to an unstable equilibrium point inside the limit cycle) represents the squeal state of the disc brake system. The results of the stability analysis show that the damping of the disc is as much Important as that of the pad, whereas the damping of the pad only is considered In most practical situations.

An Approximate Solution for the Local Buckling Coefficient of Pultruded I-Shape Compression Members (펄트루젼 I형 단면 압축재의 국부좌굴계수 계산을 위한 근사식의 개발)

  • Joo H. J.;Jung J. H.;Lee S.;Yoon S. J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.223-227
    • /
    • 2004
  • The pultruded structural shapes are usually composed of thin-walled plate elements. Because the composite material has relatively low elastic moduli, the design of pultruded compression members may not be governed by the material strength limit state but by the stability limit state such as the local buckling or the global buckling. Therefore, the stability limit state must be checked to design pultruded columns. In this research, the local buckling analysis of pultruded I-shape column was conducted for various composite materials using the closed-form solution. To establish the design guidelines for the local buckling of pultruded I-shape compression members, the simplified form of equation to find the local buckling coefficient of pultruded I-shape column was proposed as a function of mechanical properties and the width ratio of plate components using the results obtainde by the closed-form solution. In order to verify the validity of proposed solution, the results obtained by the proposed approximate solution were compared with those of the closed-form solution and the experimental results.

  • PDF

Effect of Bridging Exercise Using Swiss Ball and Whole Body Vibration on Trunk Muscle Activity and Postural Stability (치료용 공과 전신진동기를 이용한 교각운동이 체간근의 근활성도와 자세안정성에 미치는 영향)

  • Kim, Tack-Hoon;Kim, Eun-Ok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.348-356
    • /
    • 2009
  • The purpose of this study was to examine the effect of bridging using Swiss ball, whole body vibration (WBV), and mat on trunk and lower extremity muscle activity and postural stability. The results were as follows: 1) EMG activity of internal oblique increased significantly in WBV condition compared with mat condition (p<.05). 2) EMG activity of rectus femoris and medial gastrocnemius increased significantly in Swiss ball condition and WBV condition compared with mat condition (p<.05). 3) The muscle activity of medial hamstrings increased significantly in Swiss ball condition compared with mat condition (p<.05). 4) The limit of stability in three groups increased significantly in all directions after 4-week intervention (p<.05). 5). There were no significant differences in the limit of stability among three groups after 4-week intervention (p>.05). Therefore the trunk and lower extremity muscle activity increased in Swiss ball and WBV conditions, and postural stability was improved in three groups after intervention period.

Reactive Reserve based Contingency Constrained Optimal Power Flow to Enhance Interface Flow Limits in Terms of voltage Stability

  • Hwachang Song;Lee, Byongjun
    • KIEE International Transactions on Power Engineering
    • /
    • v.11A no.4
    • /
    • pp.27-32
    • /
    • 2001
  • This paper presents a concept of reactive reserve based contingency constrained optimal power flow (RCCOPF). RCCOPF for enhancement of interface flow limit is composed of two modules, which are the modified continuation power flow (MCPF) and reactive optimal power flow (ROPF). In RCCOPF, two modules are repeatedly performed to increase interface flow margins of selected contingent states until satisfying the required enhancement of interface flow limit. In numerical simulation, a simple example with New England 39-bus test system is shown.

  • PDF

Stability Analysis of Pile/Slope Systems Considering Pile-slope Interaction (억지말뚝-사면의 상호작용을 고려한 사면안전율 분석)

  • 김병철;유광호;정상섬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.513-520
    • /
    • 2003
  • A numerical comparison or predictions by limit equilibrium analysis and 3n analysis is presented for slope/pile system. Special attention is given to the coupled analysis based on the explicit-finite-difference code, FLAC. To this end, an internal routine (FISH) was developed to calculate a factor of safety for a pile-reinforced slope according to shear strength reduction technique. The case of coupled analyses was performed for stabilizing piles in slope in which the pile response and slope stability are considered simultaneously and subsequently the factors of safety are compared to uncoupled analysis (limit equilibrium analysis) solution for a homogeneous slope. Based on a limited parametric study, it is shown that in the free-head condition the factor of safety in slope is more conservative for a coupled analysis than for an uncoupled analysis and a definitely larger value represents when piles are installed in the middle of the slopes and are restrained in the pile head.

  • PDF

Deformation characteristics of brick masonry due to partial unloading

  • Alshebani, Milad M.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.565-574
    • /
    • 2001
  • Experimental investigation into the behaviour of half-scale brick masonry panels were conducted under cyclic loading normal to the bed joint and parallel to the bed joint. For each cycle, full reloading was performed with the cycle peaks coinciding approximately with the envelope curve. Unloading, however, was carried out fully to zero stress level and partially to two different stress levels of 25 percent and 50 percent of peak stress. Stability point limit exhibits a unique stress-strain curve for full unloading but it could not be established for partial unloading. Common point limit was established for all unloading-reloading patterns considered, but its location depends on the stress level at which unloading is carried to. Common point curves were found to follow an exponential formula, while residual strains versus envelope strains can be expressed by a polynomial function of a single term. The relation between residual strain and envelope strain can be used to determine the stress level at which deterioration due to cyclic loading began.

Seismic lateral earth pressure analysis of retaining walls

  • Ismeik, Muhannad;Shaqour, Fathi
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.523-540
    • /
    • 2015
  • Based on limit equilibrium principles, this study presents a theoretical derivation of a new analytical formulation for estimating magnitude and lateral earth pressure distribution on a retaining wall subjected to seismic loads. The proposed solution accounts for failure wedge inclination, unit weight and friction angle of backfill soil, wall roughness, and horizontal and vertical seismic ground accelerations. The current analysis predicts a nonlinear lateral earth pressure variation along the wall with and without seismic loads. A parametric study is conducted to examine the influence of various parameters on lateral earth pressure distribution. Findings reveal that lateral earth pressure increases with the increase of horizontal ground acceleration while it decreases with the increase of vertical ground acceleration. Compared to classical theory, the position of resultant lateral earth force is located at a higher distance from wall base which in turn has a direct impact on wall stability and economy. A numerical example is presented to illustrate the computations of lateral earth pressure distribution based on the suggested analytical method.

Electrochemical Detection of Hydrogen Peroxide based on Viologen Monolayers (Viologen 박막을 이용한 과산화수소의 전기화학적 검출 특성)

  • Choi, Won-Suk;Lee, Dong-Yun;Park, Sang-Hyun;Park, Jae-Chul;Kwon, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2006-2010
    • /
    • 2008
  • In this paper, we fabricated a biosensor for detecting hydrogen peroxide and investigated the sensing property. We prepared a viologen and hemoglobin modified gold electrode using self-assembly and layer by layer method. The electrochemical property of the viologen derivative was characterized in 0.1 M $NaClO_4$ electrolyte solution by cyclic voltammetry. The modified electrode showed reversible electrochemical properties and high stability. From the results, the viologen can act as a charge transfer mediator for access to the electrode surface. The catalytic characteristics of the designed sensor proved that hemoglobin has been kept in its natural structure and can retain its biological activity. The designed biosensor showed a fast amperometric response, excellent linearity and low detection limit. In addition, it had high sensitivity, good reproducibility and stability.

Reliability analysis of three-dimensional rock slope

  • Yang, X.L.;Liu, Z.A.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1183-1191
    • /
    • 2018
  • Reliability analysis is generally regarded as the most appropriate method when uncertainties are taken into account in slope designs. With the help of limit analysis, probability evaluation for three-dimensional rock slope stability was conducted based upon the Mote Carlo method. The nonlinear Hoek-Brown failure criterion was employed to reflect the practical strength characteristics of rock mass. A form of stability factor is used to perform reliability analysis for rock slopes. Results show that the variation of strength uncertainties has significant influence on probability of failure for rock slopes, as well as strength constants. It is found that the relationship between probability of failure and mean safety factor is independent of the magnitudes of input parameters but relative to the variability of variables. Due to the phenomenon, curves displaying this relationship can provide guidance for designers to obtain factor of safety according to required failure probability.