• Title/Summary/Keyword: Stability Design

Search Result 5,894, Processing Time 0.033 seconds

Robust Controller Design in Parameter Space (플랜트 매개 변수 공간상의 강인 안정화 제어기 설계)

  • Hwang, Hu-Mor
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.285-287
    • /
    • 1992
  • This paper considers the design of robust stabilizing controller of a linear time-invariant digital system subject to variations of parameter vector. For a given controller the radius of the largest stability hypersphere in this parameter space is calculated. This radius is a measure of the stability Margin of the closed-loop system. Based on this calculation a design procedure is proposed to robustify a given stabilizing controller. This algorithm iteratively enlarges the stability hypersphere in parameter space and can be used to design a controller to stabilize a plant subject to given ranges of parameter perturbations. These results are illustrated by an example.

  • PDF

An Improved Stability Design of Steel Cable-Stayed Bridges using Second-Order Effect (2차효과를 고려한 강사장교의 개선된 좌굴해석)

  • Kyung Yong-Soo;Kim Nam-Il;Lee Jun-Sok;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.993-1000
    • /
    • 2006
  • Practical stability design method of main members of cable-stayed bridges is proposed and discussed through a design example. For this purpose, initial tensions of stay cables and axial forces of main members are firstly determined using initial shaping analysis of bridges under dead loads. And then the effective buckling length using system elastic/inelastic buckling analysis and bending moments considering $P-{\delta}-{\Delta}$ effect by second-order elastic analysis are calculated for main girder and pylon members subjected to both axial forces and moments, respectively. Particularly, load combinations of dead and live loads, in which maximum load effects due to live loads are obtained, are taken into account and effects of live loads on effective buckling lengths are investigated.

  • PDF

Design Optimization of Plate-Fin Type Heat Sink for Thermal Stability (열적안정성을 위한 평판-휜형 방열판 최적설계)

  • Park, Kyoung-Woo;Choi, Dong-Hoon;Lee, Kwan-Soo;Kim, Yang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.43-48
    • /
    • 2003
  • In this study the optimization of plate-fin type heat sink for the thermal stability is performed numerically. The optimum design variables are obtained when the temperature rise and the pressure drop are minimized simultaneously. The flow and thermal fields are predicted using the finite volume method and the optimization is carried out by using the sequential quadratic programming (SQP) method which is widely used in the constrained nonlinear optimization problem. The results show that when the temperature rise is less than 34.6 K, the optimal design variables are as follows; $B_{1}$ = 2.468 mm, $B_{2}$ = 1.365 mm, and t = 10.962 mm. The Pareto optimal solutions are also presented for the pressure drop and the temperature rise.

  • PDF

A analysis on dyanmic movements of Bridge status using High Rail monitoring systems (상시 계측결과를 이용한 경부고속철도 교량의 동적거동 분석)

  • Chung Jae-Min;Han Sang-Chul;Choi Il-Yoon;Lee Jun-Seok;Seo Hyeong-Lyel
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.934-939
    • /
    • 2004
  • The Korea high-speed rail, based on the French design. It also implements new concept to increase the strength of bridge deck by adding an impact factor (dynamic intensity factor) in static load. In order to assure the dynamic stability, SYSTRA and Jeseph Penzien, a professor in CEC (the US) conducted a dynamic stability review on design phase. Analyzing the review results, they developed design criteria for dynamic behavior. This study deal with operating PSC box GIRDER equipped with measurement equipment or measured data of Seoul $\∼$ Taejeon, P.S.C BOX GIRDER bridge and steel comsition bridge equipped with measurement equipment based on structual knowledge about configuration of measuring sensor, response analysis of structure when train runs was performed by using measured data of PSC box girder to directly compare with design criteria. moreover, the dynamic stability with comparison of high-speed rail construction criteria was reviewed and analyzed based on historical records.

  • PDF

Spectral Analysis of Rectangular, Hanning, Hamming and Kaiser Window for Digital Fir Filter

  • Gautam, Ganesh;Shrestha, Surendra;Cho, Seongsoo
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.138-144
    • /
    • 2015
  • Digital filters are extensively used in the world of communication. In order to design a digital finite impulse response (FIR) filter that satisfies all the required conditions is challenging. In this paper, design techniques of digital low pass FIR filters using Rectangular window method, Hamming window, Hanning window, and Optimal Parks McClellan method are presented. The stability, number of components required and filter coefficients are demonstrated for different design techniques. It is demonstrated that filter design using hamming window is comparatively better than rectangular and hanning window though the components required for all of the windowing technique are same, hamming shows higher stability. The stability is shown with the help of magnitude and phase spectrum of each window. Simulation is carried out using MATLAB and comparisons are made entirely based on the output of the simulation.

A Controller Design for a Stability Improvement of an On-Board Battery Charger

  • Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.951-958
    • /
    • 2013
  • This paper proposes the controller design for a stability improvement of an on-board battery charger. The system is comprised of a power factor correction (PFC) circuit and phase shift full-bridge DC-DC converter. The PFC circuit performs the control of the DC-link voltage and the input power factor. The DC-DC converter regulates the voltage and the current in the battery using the DC-link voltage. This paper proposes the design method of PI controller for the PFC circuit using a small signal model. The analysis and design of a type-three controller for the DC-DC converter is also presented. A simulation and experiment has been performed on the on-board battery charger and their results are presented to verify the validity of the proposed system.

Design Alteration of a Security DVR Monitor Structure for the Improved Dynamic Stabilty (DVR 모니터의 동특성 향상을 위한 구조 개선에 관한 연구)

  • Kim, Geon-Hyeong;Lee, Won-Koo;Lee, Tae-Hoon;Ro, Seung-Hoon;Jeong, Pyeong-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.63-68
    • /
    • 2010
  • Structural vibrations are among the biggest concerns in developing high resolution DVR(Digital Video Recorder) monitors. The vibrations in DVR monitors are mostly originated from the excitation sources such as the HDD and the cooling fan. In this study, the vibrations generated from the excitation sources were investigated in order to analyze the individual effect on the structural vibrations of the monitors and further to establish the design alteration to suppress the vibrations for the stability of the structure and for the better quality of the screen. The result shows that relatively simple design alterations can improve the stability of the structure substantially.

  • PDF

Internal Stability of Timber Framed Earth Retaining Wall (목재옹벽의 내적안정 평가에 관한 연구)

  • Lee, Kwang-Wu;Kim, Ju-Hyong;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 2011
  • This paper introduces a recently developed thinning-out timber framed earth retaining wall system. Timber framed retaining walls are usually designed by using design code of gravity type retaining wall but internal stability of timber framed earth retaining walls is often neglected. In this study, it is recommended to use the design code for segmental retaining walls by National Concrete Masonry Association (NCMA, 1997) to check internal stability of timber framed earth retaining wall. Based on the several shear test results for 3 types of timber frames, a simple design chart including internal stability is suggested.

A new stability and sensitivity design and diagnosis approach

  • Sari, Ali;Korkmaz, Kasim A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.683-690
    • /
    • 2017
  • In the stability and sensitivity design and diagnosis approaches, there are various methodologies available. Bond graph modeling by lumping technique is one of the universal methodologies in methodical analysis used by many researchers in all over the world. The accuracy of the method is validated in different arenas. Bond graphs are a concise, pictorial representation of the energy storage, dissipation and exchange mechanisms of interacting dynamic systems, subsystems and components. This paper proposes a bond graph modeling for distributed parameter systems using lumping techniques. Therefore, a steel frame structure was modeled to analyze employing bond graph modeling of distributed system using lumping technique. In the analytical part, the effectiveness of bond graphs to model this system is demonstrated. The dynamic responses of the system were computed and compared with those computed from the finite element analysis. The calculated maximum deflection time histories were found to be comparable. The sensitivity and the stability of the steel frame structure was also studied in different aspects. Thus, the proposed methodology, with its simplicity, can be used for stability and sensitivity analyses as alternative to finite element method for steel structures. The major value brought in the practical design is the simplicity of the proposed method for steel structures.

Post-pillars design for safe exploitation at Trepça hard rock mine (Kosovo) based on numerical modeling

  • Ibishi, Gzim;Genis, Melih;Yavuz, Mahmut
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.463-475
    • /
    • 2022
  • In the mine exploitation stage; one of the critical issues is the stability assessment of post-pillars. The instability of post-pillars leads to serious safety hazards in mining operations. The focus of this study is to assess the stability of post-pillars in the 130# stope in the central ore body at Trepça hard rock mine by employing both conventional (i.e., critical span curve) and numerical methods (i.e., FLAC3D). Moreover, a new numerical based index (i.e., Pillar Yield Ratio-PYR) was proposed. The aim of PYR index is to determine a border line between stable, potentially unstable, and failure state of post-pillars at a specific mine site. The critical value of pillar width to height ratio is 2.5 for deep production stopes (e.g., > 800 m). Results showed that pillar size, mining height and mining depth significantly have affected the post-pillar stability. The reliability of numerical based index (i.e., PYR) is verified based on empirical underground pillar stability graph developed by Lunder, 1994. The proposed pillar yield ratio index and pillar stability graph can be used as a design tool in new mining areas at Trepça hard rock mine and for other situations with similar geotechnical conditions.