• Title/Summary/Keyword: Stability Coefficients

Search Result 571, Processing Time 0.029 seconds

Stability of suspension bridge catwalks under a wind load

  • Zheng, Shixiong;Liao, Haili;Li, Yongle
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.367-382
    • /
    • 2007
  • A nonlinear numerical method was developed to assess the stability of suspension bridge catwalks under a wind load. A section model wind tunnel test was used to obtain a catwalk's aerostatic coefficients, from which the displacement-dependent wind loads were subsequently derived. The stability of a suspension bridge catwalk was analyzed on the basis of the geometric nonlinear behavior of the structure. In addition, a full model test was conducted on the catwalk, which spanned 960 m. A comparison of the displacement values between the test and the numerical simulation shows that a numerical method based on a section model test can be used to effectively and accurately evaluate the stability of a catwalk. A case study features the stability of the catwalk of the Runyang Yangtze suspension bridge, the main span of which is 1490 m. Wind can generally attack the structure from any direction. Whenever the wind comes at a yaw angle, there are six wind load components that act on the catwalk. If the yaw angle is equal to zero, the wind is normal to the catwalk (called normal wind) and the six load components are reduced to three components. Three aerostatic coefficients of the catwalk can be obtained through a section model test with traditional test equipment. However, six aerostatic coefficients of the catwalk must be acquired with the aid of special section model test equipment. A nonlinear numerical method was used study the stability of a catwalk under a yaw wind, while taking into account the six components of the displacement-dependent wind load and the geometric nonlinearity of the catwalk. The results show that when wind attacks with a slight yaw angle, the critical velocity that induces static instability of the catwalk may be lower than the critical velocity of normal wind. However, as the yaw angle of the wind becomes larger, the critical velocity increases. In the atmospheric boundary layer, the wind is turbulent and the velocity history is a random time history. The effects of turbulent wind on the stability of a catwalk are also assessed. The wind velocity fields are regarded as stationary Gaussian stochastic processes, which can be simulated by a spectral representation method. A nonlinear finite-element model set forepart and the Newmark integration method was used to calculate the wind-induced buffeting responses. The results confirm that the turbulent character of wind has little influence on the stability of the catwalk.

Modeling and Analysis of SEIG-STATCOM Systems Based on the Magnitude-Phase Dynamic Method

  • Wang, Haifeng;Wu, Xinzhen;You, Rui;Li, Jia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.944-953
    • /
    • 2018
  • This paper proposes an analysis method based on the magnitude-phase dynamic theory for isolated power systems with static synchronous compensators (STATCOMs). The stability margin of an isolated power system is greatly reduced when a load is connected, due to the disadvantageous features of the self-excited induction generators (SEIGs). To analyze the control process for system stability and to grasp the dynamic characteristics in different timescales, the relationships between the active/reactive components and the phase/magnitude of the STATCOM output voltage are derived in the natural reference frame based on the magnitude/phase dynamic theory. Then STATCOM equivalent mechanical models in both the voltage time scale and the current time scale are built. The proportional coefficients and the integral coefficients of the control process are converted into damping coefficients, inertia coefficients and stiffness coefficients so that analyzing its controls, dynamic response characteristics as well as impacts on the system operations are easier. The effectiveness of the proposed analysis method is verified by simulation and experimental results.

The Effect Of Stability On The Intensity Of Vertical Turbulent Diffusion In The Western Channel Of The Korea Strait

  • Chung, Jong Yul
    • 한국해양학회지
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 1977
  • Vertical mixing in the ocean affects the formation of water masses as well as the vertical distribution of nutrients and dissolved substances. this study is to investigate the effect of stability on the intensity of vertical transfer in the case of shallow and straitfied channel. It is found that the relation of the stability and vertical turbulent diffusion is given by K$\sub$z/ = -${\beta}$-(c+${\beta}$) / ${\alpha}$(E-1/${\alpha}$) where K$\sub$z/ and E denotes the vertical turbulent diffusion coefficient and stability, respectively. The empirical coefficients ${\alpha}$, ${\beta}$ and c depend on the magnitude of vertical components and stability, i.e., through thermocline intensity. The study indicates that the diffusivity of the surface mixed layer is (K$\sub$z/)=300∼1,200$\textrm{cm}^2$/sec, the thermocline layer is (K$\sub$z/)= 50∼200$\textrm{cm}^2$/sec and the cold layer is (K$\sub$z/)=200∼600$\textrm{cm}^2$/sec based on near- minimum least-squares error estimates from the regression analysis. An important result of our study comes out that the model is in accordance with the general trends of the effect of stability on the vertical turbulent diffusion coefficients in the case of shallow and strongly stratified channel.

  • PDF

Prediction of Hydrodynamic Coefficients for Underwater Vehicle Using Rotating Arm Test (강제선회시험을 이용한 수중운동체의 유체력 미계수 추정)

  • Jeong, Jae-Hun;Han, Ji-Hun;Ok, Jihun;Kim, Hyeong-Dong;Kim, Dong-Hun;Shin, Yong-Ku;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.25-31
    • /
    • 2016
  • In this study, hydrodynamic coefficients were obtained from a Rotating Arm (RA) test, which is one of the captive model tests used to provide accurate coefficients in the control motion equation of an underwater vehicle. The RA test was carried out at the RA facility of ADD (Agency for Defense Development), and the forces and moments acting on the underwater vehicle were measured using a six-axis waterproof gage. A multiple regression analysis was used in the analysis of the measured data. The experimental results were also verified by comparison with the theoretical values of the previous linear coefficients. In addition, the stability indices in the horizontal plane were calculated using the linear and nonlinear coefficients, and the dynamic stability of the underwater vehicle was estimated to have a good dynamic performance with a depth ratio of 6.0.

Analysis of the first order eigenvalue sensitivity affected by generator model (발전기 모델링 정도에 의한 고유치 감도계수에 미치는 영향해석)

  • Cho, Eon-Jung;Lee, Kun-Jae;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.119-121
    • /
    • 2003
  • In small signal stability analysis of power systems, eigenvalue analysis is the most useful method and the detailed modeling of generator gives an important effect to the eigenvalues. Generator full model is used for precise dynamic analysis of generators and controllers while two-axis model is used for multimachine systems because of the reduced order of the state matrix. Also, the eigenvalue sensitivity coefficients are used for optimization of controller parameters to improve system stability. This paper compare the first order eigenvalue sensitivity coefficients of controllers in case of generator full model with those of two-axis model. As a result of an example the estimated eigenvalues using sensitivity coefficients in case of generator full model is very close to those of state matrix within 1% error ratios.

  • PDF

Analytical solution of seismic stability against overturning for a rock slope with water-filled tension crack

  • Zhang, Yanjun;Nian, Tingkai;Zheng, Defeng;Zheng, Lu
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.457-469
    • /
    • 2016
  • Steep rock slope with water-filled tension crack will happen to overturn around the toe of the slope under seismic loading. This failure type is completely different from the common toppling failure occurring in anti-dipping layered rock mass slopes with steeply dipping discontinuities. This paper presents an analytical approach to determine the seismic factor of safety against overturning for an intact rock mass slope with water-filled tension crack considering horizontal and vertical seismic coefficients. This solution is a generalized explicit expression and is derived using the moment equilibrium approach. A numerical program based on discontinuous deformation analysis (DDA) is adopted to validate the analytical results. The parametric study is carried out to adequately investigate the effect of horizontal and vertical seismic coefficients on the overall stability against overturning for a saturated rock slope under two water pressure modes. The analytical results show that vertically upward seismic inertia force or/and second water pressure distribution mode will remarkably decrease the slope stability against overturning. Finally, several representative design charts of slopes also are presented for the practical application.

Effect of beam slope on the static aerodynamic response of edge-girder bridge-deck

  • Lee, Hoyeop;Moon, Jiho;Chun, Nakhyun;Lee, Hak-eun
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.157-176
    • /
    • 2017
  • 2-edge box girder bridges have been widely used in civil engineering practice. However, these bridges show weakness in aerodynamic stability. To overcome this weakness, additional attachments, such as fairing and flap, are usually used. These additional attachments can increase the cost and decrease the constructability. Some previous researchers suggested an aerodynamically stabilized 2-edge box girder section, giving a slope to the edge box instead of installing additional attachments. However, their studies are limited to only dynamic stability, even though static aerodynamic coefficients are as important as dynamic stability. In this study, focus was given to the evaluation of static aerodynamic response for a stabilized 2-edge box girder section. For this, the slopes of the edge box were varied from $0^{\circ}$ to $17^{\circ}$ and static coefficients were obtained through a series of wind tunnel tests. The results were then compared with those from computational fluid dynamics (CFD) analysis. From the results, it was found that the drag coefficients generally decreased with the increasing box slope angle, except for the specific box slope range. This range of box slope varied depending on the B/H ratio, and this should be avoided for the practical design of such a bridge, since it results in poor static aerodynamic response.

Stability and Accuracy of the Conversion Model of Open-Ended Coaxial Probe (개방 단말 동축선 프로브의 환산모델에 대한 안정성과 정확성)

  • Kim Yee-Jung;Jo Yu-Sun;Kim Se-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.33-39
    • /
    • 2005
  • Complex permittivities of material in a wide bandwidth are measured by using an open-ended coaxial probe. To obtain a confident complex permittivity profile, the accuracy of measured reflection coefficients and the stability of the conversion model should be guaranteed in advance. In this paper, the sensitivity of our conversion model is analyzed by employing two instruments with different uncertainties. And various factors effected on the accuracy of measured reflection coefficients are investigated in experiment.

EXISTENCE AND GLOBALLY EXPONENTIAL STABILITY OF PERIODIC SOLUTION OF IMPULSIVE FUZZY BAM NEURAL NETWORKS WITH DISTRIBUTED DELAYS AND VARIABLE COEFFICIENTS

  • Zhang, Qianhong;Yang, Lihui;Liao, Daixi
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.1031-1049
    • /
    • 2012
  • In this paper, a class of impulsive fuzzy bi-directional associative memory (BAM) neural networks with distributed delays and variable coefficients are considered. Using Lyapunov functional method and fixed point theorem, we derived some sufficient conditions for the existence and globally exponential stability of unique periodic solution of the networks. The results obtained are new and extend the previous known results. In addition, an example is given to show the effectiveness of our results obtained.