• Title/Summary/Keyword: Sr-페라이트

Search Result 59, Processing Time 0.033 seconds

Study on Grinding Force and Ground Surface of Ferrite (페라이트의 연삭저항 및 연삭면 특성)

  • 김성청
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.17-25
    • /
    • 1997
  • This paper aims to clarify the effects of grinding conditions on the grinding force, ground surface and chipping size of workpiece in surface grinding of various ferrites with the resin bond diamond wheel. The main conclusions obtained were as follows: In a constant peripheral wheel speed, the specific grinding energy is fitted by straight lines with grinding depth coefficient($\delta$) in a logarithmic graph. The effect of both depth of cut and workpiece speed on grinding energy becomes larger in the order of Mn-Zn, Cu-Ni-Zn and Sr. When using the diamond grain of the lower toughness, the roughness of the ground surface becomes lower. The ground surfaces show that the fracture process during grinding becomes more brittle in the order of Sr, Mn-Zn and Cu-Ni-Zn. The chipping size at the corner of workpiece in grinding increases with the the increases of the depth of cut and workpiece speed, and the decrease of peripheral wheel speed. The effect of both depth of cut and workpiece speed on chipping size becomes more larger in the order of Sr, Mn-Zn and Cu-Ni-Zn.

  • PDF

The Effect of CuO and SiO2 on the Magnetic Properties of Sr-Ferrite (CuO와 SiO2가 Sr-페라이트의 자기적 특성에 미치는 영향)

  • 김동식;김동엽;정원용;오재현
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.747-754
    • /
    • 1989
  • The effects of CuO and SiO2 on the sintered density, grain growth and magnetic properties of Sr-ferrite were investigated. The sintered density of Sr-ferrite is increased with increasing the amount of CuO or SiO2 addition. The grain of Sr-ferrite grow uniformly with the addition of CuO, so remanence increases and coercivity decreases. The addition of SiO2 increase coercivity but does not affect remanence prominently. The sintering temperature above 125$0^{\circ}C$ and SiO2 addition above 0.8wt% causes abnormal grain growth in Sr-ferrite. When CuO and SiO2 are added simultaneouly, remanence does not decrease but coercivity shows low value.

  • PDF

New Magnetic Porcelain Mmaterials using Isotropic Sr-ferrite Granules (등방성 Sr-페라이트 과립을 이용한 새로운 자성도자기 소지)

  • 조태식;정지욱
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.882-887
    • /
    • 2004
  • The new magnetic porcelain materials have been studied by mixing magnetic St-ferrite powders with traditional porcelain materials before forming process. For the maintenance of magnetic characteristics after glaze firing process, the Sr-ferrite grains with the size of 1∼2 ${\mu}{\textrm}{m}$ were agglomerated as the isotropic granules with the size of 0.5∼2 mm. The high characteristics of magnetic porcelain materials were achieved at the following conditions; isotropic Sr-ferrite granules of 30 wt%, granule size of 1.4∼2 mm, and glaze firing temperature of $1250^{\circ}C$ in air The magnetic porcelain materials indicated the high magnetic properties, such as the remanent flux density of 240 G, the intrinsic coercivity of 3910 Oe, and the surface flux density of 178 G. The extraction properties of the magnetic tea cups were high compared to that of the traditional tea cups.

Effects of Oxidant on the Properties of Sr-ferrites Using Mill Scale (밀 스케일을 사용한 Sr-페라이트의 특성에 미치는 산화제의 영향)

  • Cho, Tae-Sik;Choi, Seung-Duek
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.131-135
    • /
    • 2011
  • We have been studied the effects of oxidant on the properties of Sr-ferrite magnets using mill scale for motor. The small-added (0.5 wt%) $NaNO_3$ oxidant improved significantly the degree of oxidation and the grindability of mill scale, and then highly enhanced the magnetic properties of anisotropic Sr-ferrite sintered magnets; such as the remanent flux density from 3.55 to 3.80 kG, the intrinsic coercivity from 2.75 to 3.22 kOe, and the maximum energy product from 2.90 to 3.45 MGOe.

Multi-pole anisotropic Sr-ferrite sintered magnets fabricated by powder injection molding (분말사출성형으로 제조된 다극 이방성 Sr-페라이트 소결자석)

  • Cho, Tae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.284-287
    • /
    • 2001
  • Multi-pole anisotropic Sr-ferrite sintered magnets has been studied by powder injection molding under applied magnetic field. The orientation of anisotropic Sr-ferrite powders higher than 80% during injection molding is achieved at the following conditions; apparent viscosity lower then 2500 poise in 1000 $sec^{-1}$ shear rate and applied magnetic field higher then 4 kOe. For the high fluidity and strength of injection molded compact, and the effective binder removal without defects during solvent extraction and thermal debinding, the optimum multi-binder composition is paraffin wax(PW)/carnauba wax(CW)/HDPE = 50/25/25 wt%. The rate of binder removal is proportional to the mean particle size of Sr-ferrite powders whereas it is inversely proportional to the content of Sr-ferrite powders and the sample thickness. The high magnetic properties of Sr-ferrite sintered magnets are; 3.8 kG of remanent flux density, 3.4 kOe of intrinsic coercivity, and 1.2 kG of surface flux density (l-mm-thick) in the direction of applied magnetic field.

  • PDF

Magnetic Properties of Sr-ferrite Powders via Modified Low Temperature Co-spray Roasting Process (저온 분무 열분해법으로 제조된 Sr-ferrite의 자기특성)

  • 김효준;조태식;남효덕;양충진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.931-939
    • /
    • 1998
  • Preparation of the hexagonal Sr-ferrite powsers with high performance by co-spraying precusor of the FeCl$_2$+SrCO$_3$ at a low temperature was proved as a cost =-effective method. The co-spray roasting was carried out in the temperature range of 300~$700^{\circ}C$ after SrCO$_3$ powders were mixed into 12FeCi$_2$.4$H_2O$ liquor. By this low temperature roasting method fine particles of multi-phased FeO$_2$+SrCO$_3$ were formulated. Powders calcined at 105$0^{\circ}C$ for 1 hour show the best magnetic property of M\ulcorner=69.96 emu/g, M\ulcorner=36.98 emu/g, and \ulcornerH\ulcorner=4.31 Oe. This calcining temperature is lower than that of the conventional dry method by 10$0^{\circ}C$.

  • PDF

Study on grindability of ferrite (페라이트의 연삭성에 관한 연구)

  • Kim, Seong-Cheong;Lee, Jae-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1507-1519
    • /
    • 1997
  • This paper aims to clarify the effects of grinding conditions on bending strength in surface grinding of various ferrites with the resin bond diamond wheel. The main conclusions obtained were as follows. At a constant material removal rate, the strength improves with increased wheel depth of cut and decreased workpiece speed. It is desirable to grind at higher peripheral wheel speed and under the critical workpiece speed presented in this paper. Grinding the ferrite of higher brittleness, the wheel depth of cut limited to hold 50% of their inherent strength becomes lower. The effect of various grinding conditions on bending strength becomes more larger in the order of Sr, Mn-Zn and Cu-Ni-Zn. When using the diamond grain of the lower toughness, the bending strength becomes higher, and the wheel wear occurs faster. Considering both bending strength and wheel wear rate, the best concentration of wheel is 100. The ground surfaces exhibit that the fracture process during grinding becomes more brittle in the order of Sr, Mn-Zn and Cu-Ni-Zn.

Studies on the Chemical and Physical Properties of Perovskite-Type Ferrites Containing Strontium (스트론티움을 포함하는 페롭스카이트형 페라이트의 화학적·물리적 성질에 관한 연구)

  • Lee, Eun-Seok;Yo, Chul-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.342-348
    • /
    • 1993
  • At 1473 K under atmospheric pressure, the homogeneous samples of the $Sm_{1-x}Sr_xFe^{3+}{_{1-t}}Fe^{4+}{_t}O_{3-y}$ ($0.00{\leq}x{\leq}1.00$) ferrite system were prepared. With the increase in x value, the amount of $Fe^{4+}$ ion increased and the crystallographic structure was changed from orthorhombic symmetry to cubic symmetry. The electrical conductivity at constant temperature sharply increases and the activation energy decreases with the increase of $Fe^{4+}$ ion. $M{\ddot{o}}ssbauer$ spectrum of the sample x=0.00 shows six-line pattern indicating the presence of $Fe^{3+}$ ion in the octahedral sites.

  • PDF

First-principles study of the magnetic properties of the strontium hexaferrite $SrFe_{12}O_{19}$ (제일원리 계산을 이용한 스트론튬 페라이트의 자기적 특성 전산모사)

  • Yook, Young-Jin;Chung, Yong-Chae;Lee, Young-Jin;Im, Jong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.201-201
    • /
    • 2006
  • 영구자석은 크게 Hard ferrite와 희토류계 자석, 그리고 Alnico 주조자석으로 구별되어진다. 그동안 Hard ferrite는 산업적으로 전자기 응용제품 또는 각종 구동 모터에 응용되어 왔지만, 최근 Nd계 희토류 자것이 고성능 모터의 소재로 급격히 대체되고 있다. 하지만, 희토류계 원료에 비해 동일 중량 대비 40~60배 가량 저렴한 Hard ferrite의 사용은 현재까지도 꾸준히 유지되고 있으며, 최근 자동차 고성능 모터용 Sr ferrite의 개발이 연구 중이다.[2] 본 연구에서는 제일원리 전산모사를 통하여 HCP 구조의 기본 Unit Cell 64개 원자를 가진 Sr-ferrite의 격자상수를 계산하여 기존 연구결과와 비교하였으며, 자화에너지와 자기모멘트를 계산하였다. 또한 향후 각종 첨가물의 영향에 대한 연구를 위해 기본 구조 및 치환 구조에 대해 고찰하였다. 그 결과 가장 안정한 에너지를 갖는 격자상수는 a=5.88, b=23.03으로 계산되어 Kimura et al의 측정 결과와 유사한 결과를 얻을 수 있었으며, $E_F$가 3.9171, $M_B$는 46.6481로 계산되었다. 항후 Sr-ferrite의 구조에서 Fe atom의 일부를 동일주기 원소인 Cr, Mn, Co, Ni, Cu로 치환하여 자기적 특성을 계산하여 본 연구결과와 비교하고자 한다.

  • PDF