• Title/Summary/Keyword: Sr^{2+}$

Search Result 3,339, Processing Time 0.033 seconds

Decomposition of Carbon Dioxide Using Sr Ferrites with Various Compositions (다양한 조성의 Sr 페라이트를 이용한 CO2분해 반응 특성)

  • 신현창;최정철;정광덕;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.191-197
    • /
    • 2003
  • Sr ferrites with various compositions were applied to the decomposition of $CO_2$ to mitigate the greenhouse effect. In the reduction reaction of Sr ferrites up to 80$0^{\circ}C$, starting temperature was lower with increasing of Sr content in Sr ferrite. However, the reactivity was higher with decreasing Sr content. In the $CO_2$ decomposition reaction with reduced Sr ferrites, the amount of CO and C were depended on the ratio of Sr and Fe in Sr ferrite. With increasing Sr content. larger amount of C were deposited on the surface of ferrite. Therefore, in order to apply Sr ferrites for the decomposition of $CO_2$, it is necessary to control the ratio of Sr and Fe according to the conditions used.

Microstructure of $SrBi_2(Ta,Nb)_2O_9$ Thin Films on $SrTiO_3$(001) Single Crystal ($SrTiO_3$(001) 단결정 위에 제조된 $SrBi_2(Ta,Nb)_2O_9$ 박막의 미세구조)

  • 이지현
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.10
    • /
    • pp.1008-1013
    • /
    • 2000
  • SrTi $O_3$(001) 단결정 기판 위에 졸-겔 스핀코팅으로 $SrBi_2(Ta,Nb)_2O_9$ 박막을 도포하고 그 결정화 과정을 고온 X-선 회절분석 (HTXRD)으로 추적하면서 Pt(111)/Ti/ $SiO_2$/Si 위에 성장한 박막과 비교하였다. SrTi $O_3$(001) 단결정 기판 위에 도포된 $SrBi_2Nb_2O_{9}$ 박막은 fluorite-like phase와 같은 transient phase를 거치지 않고 곧바로 순수한 $SrBi_2Nb_2O_9$ 상으로 결정화가 시작되었으며 결정화가 시작되는 온도인 ${\sim}540^{\circ}C$부터 c축 배향성장하였다. 또한 $SrB i_2(Ta,Nb)_2O_9$ 박막은 Ta/Nb 비에 관계없이 $SrTiO_3$(001) 위에서 모두 $(00{\ell})$로 배향되었으며, 코팅 횟수가 늘어나 필름의 두께가 증가함에 따라 c축 배향성은 미세한 감소를 보였다. $SrBi_2Nb_2O_9/SrTiO_3$단면을 TEM으로 관찰한 결과 $SrBi_2Nb_2O_9$은 대체로 불규칙한 크기의 다결정체로 되어 있었으나 계면 부근에서는 [001]$_{SBN}$//[001]$_{SrTi}$ $O_3$/, [100]$_{SBN}$//[100]$_{SrTi}$ $O_3$/라는 결정학적 관계를 가지며 에피탁샬 성장했음을 알 수 있었다.있었다.

  • PDF

High-temperature Thermal Decomposition of Cs-adsorbed CHA-Cs and CHA-PCFC-Cs Zeolite System, and Sr-adsorbed 4A-Sr and BaA-Sr Zeolite System (Cs-흡착 CHA-Cs 및 CHA-PCFC-Cs 제올라이트계와 Sr-흡착 4A-Sr 및 BaA-Sr 제올라이트계의 고온 열분해)

  • Lee, Eil-Hee;Kim, Ji-Min;Kim, Hyung-Ju;Kim, Ik-Soo;Chung, Dong-Yong;Kim, Kwang-Wook;Lee, Keun-Young;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.49-58
    • /
    • 2018
  • For the immobilization of high-radioactive nuclides such as Cs and Sr by high-temperature thermal decomposition, this study was carried out to investigate the phase transformation with calcined temperature by using TGA (thermogravimetric analysis) and XRD (X-ray diffraction) in the Cs-adsorbed CHA (chabazite zeolite of K type)-Cs and CHA-PCFC (potassium cobalt ferrocyanide)-Cs zeolite system, and Sr-adsorbed 4A-Sr and BaA-Sr zeolite system, respectively. In the case of CHA-Cs zeolite system, the structure of CHA-Cs remained at up to $900^{\circ}C$ and recrystallized to pollucite ($CsAlSi_2O_6$) at $1,100^{\circ}C$ after undergoing amorphous phase at $1,000^{\circ}C$. However, the CHA-CFC-Cs zeolite system retained the CHA-PCFC-Cs structure up to $700^{\circ}C$, but its structure collapsed in $900{\sim}1,000^{\circ}C$, and then transformed to amorphous phase, and recrystallized to pollucite at $1,100^{\circ}C$. In the case of 4A-Sr zeolite system, on the other hand, the structure of 4A-Sr maintained up to $700^{\circ}C$ and its phase transformed to amorphous at $800^{\circ}C$, and recrystallized to Sr-feldspar ($SrAl_2Si_2O_8$, hexagonal) at $900^{\circ}C$ and to $SrAl_2Si_2O_8$ (triclinic) at $1,100^{\circ}C$. However, the BaA-Sr zeolite system structure began to break down at below $500^{\circ}C$, and then transformed to amorphous phase in $500{\sim}900^{\circ}C$ and recrystallized to Ba/Sr-feldspar (coexistence of $Ba_{0.9}Sr_{0.1}Al_2Si_2O_8$ and $Ba_{0.5}Sr_{0.5}Al_2Si_2O_8$) at $1,100^{\circ}C$. All of the above zeolite systems recrystallized to mineral phase through the dehydration/(decomposition) ${\rightarrow}$ amorphous ${\rightarrow}$ recrystallization with increasing temperature. Although further study of the volatility and leachability of Cs and Sr in the high-temperature thermal decomposition process is required, Cs and Sr adsorbed in each zeolite system are mineralized as pollucite, Sr-feldspar and Ba/Sr-feldspar. Therefore, Cs and Sr seen to be able to completely immobilize in the calcining wasteform/(solidified wasteform).

Two Crystal Structures of Dehydrated Sr$^{2+}$ and Tl$^+$ Exchanged Zeolite A, $Sr_xTl_{12-2x}$-A (x=1.6 and 5.45)

  • Jeong Weon Yang;Jong Yul Park;Un Sik Kim;Yang Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.582-585
    • /
    • 1989
  • Two crystal structures of dehydrated $Sr^{2+}\;and\;Tl^+$ exchanged zeolite A, $Sr_xTl_{12-2x}-A$ (x = 1.6 and 5.45), have been determined by single-crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at $21(1)^{\circ}C.$ Both crystals were ion exchanged in flowing streams of mixed $Sr(NO_3)_2\;and\;TlNO_3$ aqueous solution, followed by dehydration at $360^{\circ}C\; and\; 2${\times}$10^{-6}$ Torr for 2 days. Full-matrix least-squares refinements of the dehydrated $Sr_{1.6}Tl_{8.8}-A (a = 12.214(2){\AA})\; and\;Sr_{5.45}Tl{1.1}-A (a=12.291(2){\AA})$ have converged to final error indices, $R_1=0.055\; and\;R_2=0.061$ with 286 reflections, and R1 = 0.072 and R2 = 0.090 with 217 reflections, respectively, for which$\;I\;{>}\;3{\sigma}(I)$. In both structures, all Sr(II) ions are coordinated by three framework oxygens; Sr(II) to O(3) distances are $2.21(2){\AA}\;for\;Sr_{1.6}Tl_{8.8}-A \;and\;2.31(1){\AA} \;for\;Sr_{5.45}Tl_{1.1}-A,$and Tl(I) to O(3) distances are $2.657(6){\AA}\;for\;Sr_{1.6}Tl_{8.8}-A\;and\;2.845(8){\AA}\;for\;Sr_{5.45}Tl_{1.1}-A,$ respectively. In each structure, the angle subtended at Sr(II), O(3)-Sr(II)-O(3) is $118.7(4)^{\circ}\;for\; Sr_{1.6}Tl_{8.8}-A \;and\;120.0(4)^{\circ}\;for\;Sr_{5.45}Tl_{1.1}-A.\;Sr^{2+}$ ions prefer to 6-ring sites and $Tl^+$ ions to 8-ring sites when total number of ions per unit cell is more than 8.

Synthesis of $SrTiO_3$ from the Mixtures of $SrCO_3$ and $TiO_2$ ($SrCO_3$$TiO_2$를 사용한 $SrTiO_3$의 합성반응에 관한 연구)

  • 이종권;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.1
    • /
    • pp.43-48
    • /
    • 1983
  • The formation of strontium titanate from several molar $SrCO_3$ and $TiO_2$ mixtures was studied in air and $CO_2$ gas Mixtures of $SrCO_3$ and $TiO_2$ were heated in air at 400-$600^{\circ}C$ DTA-TG was used to obtain thermal histories of simples heated in air and $CO_2$ gas. X-ray diffraction analysis was used to determine both the phase composition and the amounts of each phase present. The phase relationship of various compounds $SrTiO_3$, $Sr_2TiO_4$, $Sr_2Ti_3O_7$ and $Sr_4Ti_3O_{10}$ formed by the sintering in each composition was shown by the calibration curves. High temperature X-ray analysis was used to determine both the formation process and deformation process of each products. Small amount of SrTiO3 is formed first at the surface af contact SrTiO3 reacts with $SrCO_3$ to form Sr2TiO4 this is affected on the $CO_2$ pressure.

  • PDF

Synthesis of SrGa2S4 Phosphor and Its Luminescent Properties (SrGa2S4 형광체의 합성과 발광 특성)

  • Heo, Yeong-Deok;Sim, Jae-Hun;Do, Yeong-Rak
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.2
    • /
    • pp.164-168
    • /
    • 2002
  • SrGa$_2$S$_4$ : Eu is a green emitting phosphor which is applied for field emission display, and cathodoluminescence. Conventionally, SrGa$_2$S$_4$ : Eu is synthesized by solid state reaction, in which a mixture of SrCO$_3$, Ga$_2$O$_3$, and Eu$_2$O$_3$ is fired at high temperatures under flowing H$_2$S and Ar gases. In this study,SrGa$_2$S$_4$ : Eu phosphor is synthesized by using a decomposition method, where SrS, Eu complex, and Ga com-plex are used. The advantage of this method is that toxic H$_2$S gas and Ar gas are not used. The synthetic con-ditions and luminescent properties of SrGa$_2$S$_4$ : Eu phosphor are also investigated.

Synthesis and luminescence properties of $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ phosphors ($Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ 형광체의 합성과 발광 특성)

  • Sung, Hye-Jin;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.267-272
    • /
    • 2006
  • A series of $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ phosphors have been synthesized by solid-state reaction. The photoluminescence and structural properties of $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ have been examined. The $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ phosphors have a strong absorption at 400 nm, which is the emission wavelength of a violet light emitting diode (LED). The emission peaks of $SrGa_2S_4:Ce,Na$are located at 448 nm and 485 nm. The partial replacement of Sr by Ca in $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ causes a red shift of emission wavelengths. The $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ can be used as blue emitting phosphors pumped by the violet LED for fabricating the multi-band white LED.

Decrease in $Ca^{2+}$ Storage in the Cardiac Sarcoplasmic Reticulum of Diabetic Rat

  • Kim, Won-Tae;Kim, Hae-Won;Kim, Young-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.725-732
    • /
    • 1998
  • In order to elucidate the molecular mechanism of the intracellular $Ca^{2+}$ overload frequently reported from diabetic heart, diabetic rats were induced by the administration of streptozotocin, the membrane vesicles of junctional SR (heavy SR, HSR) were isolated from the ventricular myocytes, and SR $Ca^{2+}$ uptake and SR $Ca^{2+}$ release were measured. The activity of SR $Ca^{2+}-ATPase$ was $562{\pm}14$ nmol/min/mg protein in control heart. The activity was decreased to $413{\pm}30$ nmol/min/mg protein in diabetic heart and it was partially recovered to $485{\pm}18$ nmol/min/mg protein in insulin-treated diabetic heart. A similar pattern was observed in SR $^{45}Ca^{2+}$ uptakes; the specific uptake was the highest in control heart and it was the lowest in diabetic heart. In SR $^{45}Ca^{2+}$ release experiment, the highest release, 45% of SR $^{45}Ca^{2+}$, was observed in control heart. The release of diabetic heart was 20% and it was 30% in insulin-treated diabetic heart. Our results showed that the activities of both SR $Ca^{2+}-ATPase$ and SR $Ca^{2+}$ release channel were decreased in diabetic heart. In order to evaluate how these two factors contribute to SR $Ca^{2+}$ storage, the activity of SR $Ca^{2+}-ATPase$ was measured in the uncoupled leaky vesicles. The uncoupling effect which is able to increase the activity of SR $Ca^{2+}-ATPase$ was observed in control heart; however, no significant increments of SR $Ca^{2+}-ATPase$ activities were measured in both diabetic and insulin-treated diabetic rats. These results represent that the $Ca^{2+}$ storage in SR is significantly depressed and, therefore, $Ca^{2+}-sequestering$ activity of SR may be also depressed in diabetic heart.

  • PDF

Somatostatin Receptor 2 and 5 Expressions in Gastroenteropancreatic Neuroendocrine Tumors in Turkey

  • Yerci, Omer;Sehitoglu, Ibrahim;Ugras, Nesrin;Cubukcu, Erdem;Yuce, Suleyman;Bedir, Recep;Cure, Erkan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4377-4381
    • /
    • 2015
  • Background: Gastroenteropancreatic neuroendocrine tumors (GNs) are slow growing and although their incidence has increased in recent years, they are relatively rarely seen. Somatostatin analogues are used in the treatment of GNs that express somatostatin receptor (SR). We aimed to investigate the expression of SR2 and SR5 in GNs. Materials and Methods: In this study the expression of SR2 and SR5 was investigated immunohistochemically in 49 cases (26 males, 23 females) diagnosed and graded with GN according to the World Health Organization classification 2010. Results: The percentage of SR2 staining was 91.0% in grade 1, 82.8% in grade 2 and 100% in grade 3. On the other hand, the percentage of SR5 staining was 81.8% % in grade 1, 60.0% in grade 2 and 0% in grade 3. According to the tumor localization, the percentages of SR2 expression were as follows: pancreas 85.7%, stomach 100%, small bowel 70%, appendix 85.7% and rectum 100%. The percentages of SR5 expression were: pancreas 61,9%, stomach 37.5%, small bowel 70%, appendix 71.5% and rectum 66.6%. There was a significant negative correlation between ki67 percentage and SR5 expression (r=-0.341, p=0.016). Conclusions: In this study, GNs were found to highly express SR2 and SR5. Although the expression of SR2 and SR5 changed according to tumor localization, the expression of SR2 was higher than the expression of SR5 in GN. There was a significant negative correlation between ki67 and SR5. Accordingly, SR5 may be a prognostic indicator of GN.

Adsorption Removal of Sr by Barium Impregnated 4A Zeolite (BaA) From High Radioactive Seawater Waste (Barium이 함침된 4A 제올라이트 (BaA)에 의한 고방사성해수폐액에서 Sr의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.101-112
    • /
    • 2016
  • This study investigated the removal of Sr, which was one of the high radioactive nuclides, by adsorption with Barium (Ba) impregnated 4A zeolite (BaA) from high-radioactive seawater waste (HSW). Adsorption of Sr by BaA (BaA-Sr), in the impregnated Ba concentration of above 20.2wt%, was decreased by increasing the impregnated Ba concentration, and the impregnated Ba concentration was suitable at 20.2wt%. The BaA-Sr adsorption was added to the co-precipitation of Sr with $BaSO_4$ precipitation in the adsorption of Sr by 4A (4A-Sr) within BaA. Thus, it was possible to remove Sr more than 99% at m/V (adsorbent weight/solution volume)=5 g/L for BaA and m/V >20 g/L for 4A, respectively, in the Sr concentration of less than 0.2 mg/L (actual concentration level of Sr in HSW). It shows that BaA-Sr adsorption is better than 4A-Sr adsorption in for the removal capacity of Sr per unit gram of adsorbent, and the reduction of the secondary solid waste generation (spent adsorbent etc.). Also, BaA-Sr adsorption was more excellent removal capacity of Sr in the seawater waste than distilled water. Therefore, it seems to be effective for the direct removal of Sr from HSW. On the other hand, the adsorption of Cs by BaA (BaA-Cs) was mainly performed by 4A within BaA. Accordingly, it seems to be little effect of impregnated Ba into BaA. Meanwhile, BaA-Sr adsorption kinetics could be expressed the pseudo-second order rate equation. By increasing the initial Sr concentrations and the ratios of V/m, the adsorption rate constants ($k_2$) were decreased, but the equilibrium adsorption capacities ($q_e$) were increasing. However, with increasing the temperature of solution, $k_2$ was conversely increased, and $q_e$ was decreased. The activation energy of BaA-Sr adsorption was 38 kJ/mol. Thus, the chemical adsorption seems to be dominant rather than physical adsorption, although it is not a chemisorption with strong bonding form.